in 14.2 mm Stretched S08 Package

Data Sheet

Description

The ACNT-H313 contains an LED, which is optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate-controlled devices. The voltage and high peak output current supplied by this optocoupler can be used to IGBT directly. For IGBTs with higher ratings, this optocoupler can be used to drive a discrete power stage, which drives the IGBT gate. The ACNT-H313 has the highest insulation voltage of $\mathrm{V}_{\text {IORM }}=$ 2262 V PEAK in the IEC/EN/DIN EN 60747-5-5.

Functional Diagram

Notes:

- NC denotes Not Connected
- $\mathrm{A} 0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins V_{CC} and V_{EE}.

Truth Table

LED	$V_{\text {CC }}-V_{\text {EE }}$ "POSITIVE GOING" (i.e., TURN-ON)	$V_{C C}-V_{E E}$ "NEGATIVE GOING" (i.e., TURN-OFF)	$\mathbf{V}_{\mathbf{0}}$
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	LOW
ON	$0-11 \mathrm{~V}$	$0-9.5 \mathrm{~V}$	LOW
ON	$11-13.5 \mathrm{~V}$	$9.5-12 \mathrm{~V}$	TRANSITION
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	HIGH

Features

- 2.5 A maximum peak output current
- 2.0 A minimum peak output current
- 500 ns maximum propagation delay
- 350 ns maximum propagation delay difference
- $40 \mathrm{kV} / \mu \mathrm{s}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=2000 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{CC}}=5.0 \mathrm{~mA}$ maximum supply current
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- Wide operating V_{CC} Range: 15 V to 30 V
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Safety Approval
- UL Recognized 7500 V RMS for 1 min
- CSA
- IEC/EN/DIN EN 60747-5-5 VIORM $=2262$ VPEAK

Applications

- High Power System-690V V_{AC} Drives
- IGBT/MOSFET gate drive
- AC and Brushless DC motor drives
- Renewable energy inverters
- Industrial inverters
- Switching power supplies

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

ACNT-H313 is UL Recognized with 7500 V $_{\text {RMS }}$ for 1 minute per UL1577.

Part number	Option	Package	Surface Mount	IEC/EN/DIN EN 60747-5-5		
	RoHS Compliant			Tape \& Reel	$V_{\text {IORM }}=2262 \text { V PEAK }$	Quantity
ACNT-H313	-000E	$\begin{gathered} 14.2 \mathrm{~mm} \\ \text { Stretched SO-8 } \end{gathered}$	X		X	80 per tube
	-500E		X	X	X	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
ACNT-H313-500E to order a product in Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval and RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

ACNT-H313 Outline Drawing

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non- Halide Flux should be used.

Regulatory Information

The ACNT-H313 is approved by the following organizations:

UL	Recognized under UL 1577, component recognition program up to V $_{\text {ISO }}=7500$ V $_{\text {RMS }}$, File E55361
CSA	CSA Component Acceptance Notice \#5, File CA 88324
IEC/EN/DIN EN 60747-5-5	Maximum Working Insulation Voltage V VIORM $=2262$ V $_{\text {PEAK }}$

Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*

Table 2. Insulation and Safety Related Specifications

Parameter	Symbol	ACNT-H313	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	14.2	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	15.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.5	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	>300	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)	
Note: 1. All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the recommended Land Pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as pollution degree and insulation level.				

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	105	${ }^{\circ} \mathrm{C}$	
Average Input Current	$\mathrm{IF}_{\text {f(AVG }}$		25	mA	1
Reverse Input Voltage	V_{R}		5	V	
"High" Peak Output Current	$\mathrm{IOH}_{\text {(PEAK }}$		2.5	A	2
"Low" Peak Output Current	IOL(PEAK)		2.5	A	2
Total Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0	35	V	
Input Current (Rise/Fall Time)	$\mathrm{tr}_{\mathrm{r}}(\mathrm{N}) / \mathrm{tf}_{\text {f(}}(\underline{N})$		500	ns	
Output Voltage	$\mathrm{V}_{\text {O(PEAK) }}$	-0.5	$\mathrm{V}_{\text {cc }}$	V	
Output IC Power Dissipation	Po		800	mW	3
Total Power Dissipation	P_{T}		850	mW	4

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min	Max.	Units	Note
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$	
Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	15	30	V	
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	7	12	mA	
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.6	0.5	V	

Table 5. Electrical Specifications (DC)

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground. All minimum and maximum specifications are at recommended operating conditions $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $105^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7$ to $12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.6$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{V}_{\mathrm{CC}}=15$ to 30 V), unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
High Level Peak Output Current	IOH	0.5	1.5		A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}-4 \mathrm{~V}$	2,3,16	5
		2.0			A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-15 \mathrm{~V}$		2
Low Level Peak Output Current	loL	0.5	2.0		A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}$	5, 6, 17	5
		2.0			A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+15 \mathrm{~V}$		2
High Level Output Voltage	V_{OH}	Vcc-4	Vcc-3		V	$\mathrm{l}_{0}=-100 \mathrm{~mA}$	1,3,18	6,7
Low Level Output Voltage	VoL		0.1	0.5	V	$\mathrm{l}=100 \mathrm{~mA}$	4, 6, 19	
High Level Supply Current	ICCH		2.5	5.0	mA	Output Open, $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	7,8	
Low Level Supply Current	$\mathrm{I}_{\text {CCL }}$		2.5	5.0	mA	$\begin{aligned} & \text { Output Open, } \mathrm{V}_{\mathrm{F}}=-3.6 \text { to } \\ & 0.8 \mathrm{~V} \end{aligned}$		
Threshold Input Current Low to High	$\mathrm{I}_{\text {FLH }}$		1.0	5.0	mA	$\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	9,15, 20	
Threshold Input Voltage High to Low	$\mathrm{V}_{\mathrm{FHL}}$	0.5			V			
Input Forward Voltage	V_{F}	1.2	1.45	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Temperature Coefficient of Input Forward Voltage	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$B V_{R}$	3			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{C}_{\text {IN }}$		23		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
UVLO Threshold	V UVLO+	11.0	12.3	13.5	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	21	
	V UVLO-	9.5	10.7	12.0				
UVLO Hysteresis	UVLOHYS		1.6					

Table 6. Switching Specifications (AC)

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground. All minimum and maximum specifications are at recommended operating conditions $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $105^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7$ to $12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.6$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{V}_{\mathrm{CC}}=15$ to 30 $\mathrm{V})$, unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note	
Propagation Delay Time to High Output Level	tpLH	0.10	0.28	0.50	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \\ & \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA} \text { to } 12 \mathrm{~mA}, \\ & \mathrm{~V} \text { CC }=15 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10,11, \\ & 12,13, \\ & 14,22 \end{aligned}$		
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$	0.10	0.30	0.50	$\mu \mathrm{s}$				
Pulse Width Distortion	PWD			0.30	$\mu \mathrm{s}$			8	
Propagation Delay Difference Between Any Two Parts	$\begin{aligned} & \text { PDD } \\ & \left(\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right) \end{aligned}$	-0.35		0.35	$\mu \mathrm{s}$			9	
Propagation Delay Skew	tpSK			0.20	$\mu \mathrm{s}$			10	
Rise Time	t_{R}		0.10		$\mu \mathrm{s}$		22		
Fall Time	t_{F}		0.10		$\mu \mathrm{s}$				
UVLO Turn On Delay	tuvLo on		0.80		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	21		
UVLO Turn Off Delay	tuvLO OFF		0.60		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}$			
Output High Level Common Mode Transient Immunity	\|CMH		40	50		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	23	11, 12
Output Low Level Common Mode Transient Immunity	\|CML		40	50		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		11, 13

Table 7. Package Characteristics

All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All minimum/maximum specifications are at recommended operating conditions, unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	VISO	7500			VRMS	$\begin{aligned} & \mathrm{RH}<50 \%, \\ & \mathrm{t}=1 \mathrm{~min} ., \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		14, 15
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	$\mathrm{V}_{\text {I-O }}=500 \mathrm{~V}_{\mathrm{DC}}$		15
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		0.5		pF	$\mathrm{f}=1 \mathrm{MHz}$		
LED-to-Ambient Thermal Resistance	R_{11}		87		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermal Model in Application Notes below		16
LED-to-Detector Thermal Resistance	R_{12}		23					
Detector-to-LED Thermal Resistance	R_{21}		30					
Detector-to-Ambient Thermal Resistance	R_{22}		47					

* The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to your equipment level safety specification or Avago Technologies Application Note 1074 "Optocoupler Input-Output Endurance Voltage."

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Maximum pulse width $=10 \mu \mathrm{~s}$. This value is intended to allow for component tolerances for designs with lo peak minimum $=2.0 \mathrm{~A}$. See applications section for additional details on limiting loн peak.
3. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $-20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $-21.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. The maximum LED junction temperature should not exceed $125^{\circ} \mathrm{C}$.
5. Maximum pulse width $=50 \mu \mathrm{~s}$.
6. In this test V_{OH} is measured with a DC load current. When driving capacitive loads, V_{OH} will approach V_{CC} as l_{OH} approaches zero amps.
7. Maximum pulse width $=1 \mathrm{~ms}$.
8. Pulse Width Distortion (PWD) is defined as $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$ for any given device.
9. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two ACNT-H313 parts under the same test condition.
10. $t_{P S K}$ is equal to the worst-case diff erence in $t_{P H L}$ or $t_{P L H}$ that will be seen between units at any given temperature and specified test conditions.
11. Pin 1 and 4 need to be connected to LED common. Split resistor network in the ratio $1.5: 1$ with 215Ω at the anode and 140Ω at the cathode.
12. Common mode transient immunity in the high state is the maximum tolerable $d V_{C M} / d t$ of the common mode pulse, $V_{C M}$, to assure that the output will remain in the high state (i.e., $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$).
13. Common mode transient immunity in a low state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a low state (i.e., $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).
14. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 9000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 second (leakage detection current limit, $\mathrm{I}_{-\mathrm{O}} \leq 5 \mu \mathrm{~A}$).
15. Device considered a two-terminal device: pins 1, 2, 3 and 4 shorted together and pins 5, 6, 7 and 8 shorted together.
16. The device was mounted on a high conductivity test board as per JEDEC 51-7.

Figure 1. $\mathrm{V}_{\mathrm{OH}} \mathrm{vs}$. temperature.

Figure 3. I_{OH} vs. V_{OH}.

[^0]

Figure 2. I_{OH} vs. temperature.

Figure 4. $V_{0 L}$ vs. Temperature.

Figure 6. $\mathrm{V}_{\mathbf{0 L}}$ vs. $\mathrm{I}_{\mathbf{O L}}$

Figure 7. Icc vs. temperature

Figure 9. IfLH Vs. temperature

Figure 11. Propagation delay vs. I_{F}

Figure 8. Icc vs. VCC

Figure 10. Propagation delay vs. V_{CC}

Figure 12. Propagation delay vs. temperature

Figure 13. Propagation delay vs. Rg

Figure 14. Propagation delay vs. Cg

Figure 15. Transfer Characteristics

Figure 16. $\mathrm{I}_{0 \mathrm{~L}}$ test circuit

Figure 17. I_{OH} test circuit

Figure 18. $\mathrm{V}_{\text {OH }}$ test circuit

Figure 19. $\mathrm{V}_{0 \text { L }}$ test circuit

Figure 20. IfLH test circuit

Figure 21. UVLO test circuit

Figure 22. $\mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }}, \mathrm{t}_{\mathrm{r}}$ and t_{f} test circuit and waveforms

Figure 23. CMR test circuit and waveforms

Applications Information

Selecting the Gate Resistor $\left(\mathrm{R}_{\mathrm{g}}\right)$ to Minimize IGBT Switching Losses

Step 1: Calculate R_{g} minimum from the $I_{0 L}$ peak specification. The IGBT and Rg in Figure 24 can be analyzed as a simple RC circuit with a voltage supplied by the ACNT-H313.

$$
\begin{aligned}
\mathbf{R}_{\mathbf{g}} & \geq \frac{\mathrm{V}_{\mathrm{CC}}-V_{\mathrm{EE}}-V_{0 \mathrm{~L}}}{\mathrm{I}_{\mathrm{OLPEAK}}} \\
& =\frac{15+5-2}{2.5} \\
& =7.2 \Omega \cong 8 \Omega
\end{aligned}
$$

The V_{OL} value of 2 V in the previous equation is a conservative value of V_{OL} at the peak current of 2.5 A (see Figure 6). At lower R_{g} values, the voltage supplied by the ACNT-H313 is not an ideal voltage step. This results in lower peak currents (more margin) than predicted by this analysis. When negative gate drive is not used V_{EE} in the previous equation is equal to 0 V .

Figure 24. ACNT-H313 typical application circuit
Step 2: Check the ACNT-H313 Power Dissipation and Increase $\mathbf{R}_{\mathbf{g}}$ if necessary. The ACNT-H313 total power dissipation (P_{T}) is equal to the sum of the emitter power $\left(\mathrm{P}_{\mathrm{E}}\right)$ and the output power $\left(\mathrm{P}_{\mathrm{O}}\right)$:

$$
\begin{aligned}
& P_{T}=P_{E}+P_{0} \\
& P_{E}=I_{F} \cdot V_{F} \cdot \text { DutyCycle } \\
& P_{0}=P_{0(\text { BIAS })}+P_{0(\text { SWITCHING })}=I_{C C} \cdot V_{C C}+E_{S W}\left(R_{g}, Q_{g}\right) \cdot f
\end{aligned}
$$

P_{E} Parameter	Description
I_{F}	LED current
V_{F}	LED-on voltage
Duty Cycle	Maximum LED duty cycle

P_{0} Parameter	Description
I_{CC}	Supply current
V_{CC}	Positive supply voltage
V_{EE}	Negative supply voltage
$\mathrm{ESW}^{\left(\mathrm{R}_{\mathrm{g}}, \mathrm{Qg}\right)}$	Energy dissipated in the ACNT-H313 for each IGBT switching cycle (see Figure 25)
f	Switching frequency

For the circuit in Figure 24 with I_{F} (worst case) $=12 \mathrm{~mA}, \mathrm{R}_{\mathrm{g}}=8 \Omega$, Max Duty Cycle $=80 \%, \mathrm{Q}_{\mathrm{g}}=500 \mathrm{nC}, \mathrm{f}=20 \mathrm{kHz}$ and $\mathrm{T}_{\mathrm{A}} \max =85^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{E}} & =12 \mathrm{~mA} \cdot 1.8 \mathrm{~V} \cdot 0.8=17.3 \mathrm{~mW} \\
\mathrm{P}_{0} & =4.25 \mathrm{~mA} \cdot 20 \mathrm{~V}+5.2 \mu \mathrm{~J} \cdot 20 \mathrm{kHz} \\
& =85 \mathrm{~mW}+104 \mathrm{~mW} \\
& =189 \mathrm{~mW} \\
& <800 \mathrm{~mW}\left(\mathrm{P}_{0(\text { MAx })} @ 85^{\circ} \mathrm{C}\right)
\end{aligned}
$$

The value of 4.25 mA for I_{cc} in the previous equation was obtained by derating the $\mathrm{I}_{\mathrm{cc}} \mathrm{max}$ of 5 mA (which occurs at -40 ${ }^{\circ} \mathrm{C}$) to ICC max at $85^{\circ} \mathrm{C}$ (see Figure 7).

Since P_{O} for this case is smaller than $\mathrm{P}_{\mathrm{O}(\mathrm{MAX})}, \mathrm{R}_{\mathrm{g}}$ of 8Ω can be used.

Figure 25. Energy dissipated in the ACNT-H313 for each IGBT switching cycle

Thermal Model

Definitions:

R_{11} : Junction-to-Ambient Thermal Resistance of LED due to heating of LED
R_{12} : Junction-to-Ambient Thermal Resistance of LED due to heating of Detector (Output IC)
R_{21} : Junction-to-Ambient Thermal Resistance of Detector (Output IC) due to heating of LED
R_{22} : Junction-to-Ambient Thermal Resistance of Detector (Output IC) due to heating of Detector (Output IC)
P_{1} : Power dissipation of LED (W)
P_{2} : Power dissipation of Detector/Output IC (W)
T_{1} : Junction temperature of LED $\left({ }^{\circ} \mathrm{C}\right)$
T_{2} : Junction temperature of Detector $\left({ }^{\circ} \mathrm{C}\right)$
T_{A} : Ambient temperature
Ambient Temperature: Junction-to-Ambient Thermal Resistances were measured approximately 1.25 cm above optocoupler at $\sim 23^{\circ} \mathrm{C}$ in still air:

Thermal Resistance	${ }^{\circ} \mathrm{C} / \mathrm{W}$
R_{11}	87
R_{12}	23
R_{21}	30
R_{22}	47

This thermal model assumes the device is soldered onto a high conductivity board as per JEDEC 51-7.. The temperature at the LED and Detector junctions of the optocoupler can be calculated using the following equations:
$\mathrm{T}_{1}=\left(\mathrm{R}_{11} * \mathrm{P}_{1}+\mathrm{R}_{12} * \mathrm{P}_{2}\right)+\mathrm{T}_{\mathrm{A}}-$ (1)
$T_{2}=\left(R_{21} * P_{1}+R_{22} * P_{2}\right)+T_{A}-$ (2)
Using the given thermal resistances and thermal model formula in this datasheet, we can calculate the junction temperature for both LED and the output detector. Both junction temperatures should be within the absolute maximum rating of $125^{\circ} \mathrm{C}$.

Related Documents

AV02-0421EN	Application Note 5336	Gate Drive Optocoupler Basic Design for IGBT / MOSFET
AV02-3698EN	Application Note 1043	Common-Mode Noise: Sources and Solutions
AV02-0310EN	Reliability Data	Plastics Optocouplers Product ESD and Moisture Sensitivity

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Avago Technologies:
ACNT-H313-500E

[^0]: Figure 5. I_{OL} vs. temperature.

