Description

The XR33152, XR33156 and XR33158 family of high performance TIA-485/TIA-422 devices are designed for improved performance in noisy industrial environments and increased tolerance to system faults.
The analog bus pins can withstand direct shorts up to $\pm 60 \mathrm{~V}$ and are protected against ESD events up to $\pm 15 \mathrm{kV}$ HBM. An extended $\pm 25 \mathrm{~V}$ common mode operating range allows for more reliable operation in noisy environments.
The receivers include full fail-safe circuitry, guaranteeing a logic high receiver output when the receiver inputs are open, shorted or undriven. The XR33152 receiver input impedance is at least $120 \mathrm{k} \Omega$ ($1 / 10$ unit load), allowing more than 320 devices on the bus. The XR33156/58 receiver input impedance is at least $30 \mathrm{k} \Omega(1 / 2.5$ unit load), allowing more than 80 devices on the bus.
The drivers are protected by short circuit detection as well as thermal shutdown and maintain high impedance in shutdown or when powered off. The XR33152 driver is slew limited for reduced EMI and error-free communication over long or unterminated data cables.
The XR33152/56/58 family of high performance TIA-485/TIA-422 devices are designed for improved performance in noisy industrial environments and increased tolerance to system faults.
The devices with DE and $\overline{\mathrm{RE}}$ pins include hot swap circuitry to prevent false transitions on the bus during power up or live insertion and can enter a 1 nA low current shutdown mode for extreme power savings.

FEATURES

- 3.0 V to 5.5 V operation
- $\pm 60 \mathrm{~V}$ fault tolerance on analog bus pins
- Extended $\pm 25 \mathrm{~V}$ common mode operation
- Robust ESD protection:
$\square \pm 15 \mathrm{kV}$ HBM (bus pins)
$\square \pm 4 \mathrm{kV}$ HBM (non-bus pins)
- 1.65 V to 5.5 V logic Interface VL pin (full-duplex package option)
- Invert control to correct for reversed bus pins
- Enhanced receiver fail-safe protection for open, shorted or terminated but idle data lines
- Hot swap glitch protection on DE and RE pins
- Driver short-circuit current limit and thermal shutdown for overload protection
- Reduced unit loads allows up to 320 devices on bus
- Industry standard 8 and 14-pin NSOIC packages
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature range

APPLICATIONS

- Industrial control networks
- HVAC networks
- Building and process automation
- Remote utility meter reading
- Energy monitoring and control
- Long or unterminated transmission lines

Typical Application

Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections to the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

V_{CC}	-0.3V to 7.0V
V_{L}	$\mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$
Input voltage at control and driver input (DE, DI and INV) XR33152/58	-0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Receiver output voltage (RO) XR33152/58	-0.3 V to ($\left.\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Input voltage at control ($\overline{\mathrm{RE}}) \times \mathrm{XR33156}$	-0.3V to ($\left.\mathrm{V}_{\mathrm{L}}+0.3 \mathrm{~V}\right)$
Input voltage at control and driver input (DE, DI, $\mathrm{R}_{\mathrm{INV}}, \mathrm{D}_{\mathrm{INV}}$, and INV) XR33156	-0.3V to 7.0V
Receiver output voltage (RO) XR33156	-0.3V to ($\mathrm{V}_{\mathrm{L}}+0.3 \mathrm{~V}$)
Driver output voltage ($\mathrm{A}, \mathrm{B}, \mathrm{Y}$ and Z)	$\pm 60 \mathrm{~V}$
Receiver input voltage (A and B, half or full duplex)	$\pm 60 \mathrm{~V}$
Transient voltage pulse, through 100 (Figure 7)	$\pm 100 \mathrm{~V}$
Driver output current	$\pm 250 \mathrm{~mA}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead temperature (soldering, 10s)	$300^{\circ} \mathrm{C}$
Package power dissipation 8 -pin NSOIC $\theta_{\mathrm{JA}}=128.4^{\circ} \mathrm{C} / \mathrm{W}$ 14-pin NSOIC $\theta_{\mathrm{JA}}=86^{\circ} \mathrm{C} / \mathrm{W}$	Maximum junction temperature $=150^{\circ} \mathrm{C}$

CAUTION:

ESD-sensitive (electrostatic discharge) device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

Pin Configuration

Pin Functions

Half Duplex	Full Duplex	Pin Name	Type	Pin Function
XR33152	XR33156			
XR33158				
Pin Number				
-	1	$\mathrm{R}_{\text {INV }}$	In	Receiver invert control (active high). When enabled, the polarity of the receiver bus pins (A \& B) is reversed: $A=$ inverting and $B=$ non-inverting. When disabled, the receiver bus pins $(A \& B)$ operate normally: $A=$ non-inverting and $B=$ inverting. The $R_{\text {INV }}$ pin has a $150 \mathrm{~K} \Omega$ pull-down resistor.
1	2	RO	Out	Receiver output, when $\overline{R E}$ is low and if $(A-B) \geq 200 \mathrm{mV}$, RO is high. If $(A-B) \leq-200 \mathrm{mV}$, RO is low If inputs are left floating, shorted together or terminated and undriven for more than $2 \mu \mathrm{~s}$ the output is high.
2	-	INV	In	Driver and receiver invert control (active high). When enabled, the polarity of the driver input and receiver input bus pins is inverted. When disabled, the driver input and receiver inputs operate normally: $\mathrm{A}=$ non-inverting and $\mathrm{B}=$ inverting. The INV pin has a $150 \mathrm{k} \Omega$ pull-down resistor.
-	3	$\overline{\mathrm{RE}}$	In	Receiver output enable (hot swap). When $\overline{\mathrm{RE}}$ is low, RO is enabled. When $\overline{\mathrm{RE}}$ is high, RO is high impedance. $\overline{\mathrm{RE}}$ should be high and DE should be low to enter shutdown mode.
3	4	DE	In	Driver output enable (hot swap). When DE is high, outputs are enabled. When DE is low, outputs are high impedance. DE should be low and $\overline{\mathrm{RE}}$ should be high to enter shutdown mode.
4	5	DI	In	Driver input. With DE high, a low level on DI forces non-inverting output low and inverting output high. Similarly, a high level on DI forces non-inverting output high and inverting output low.
5	6, 7	GND	Power	Ground.
6	-	A/Y	I/O	Non-inverting receiver input and non-Inverting driver output.
7	-	B/Z	I/O	Inverting receiver input and Inverting driver output.

Pin Functions

Half Duplex Full Duplex

XR33152	XR33156	Pin Name	Type	Pin Function
XR33158				
Pin Number				
8	14	V_{CC}	Power	3.0 V to 5.5 V power supply input bypass to ground with $0.1 \mu \mathrm{~F}$ capacitor.
-	12	A	In	Non inverting receiver input.
-	11	B	In	Inverting receiver input.
-	9	Y	Out	Non-inverting driver output.
-	10	Z	Out	Inverting driver output.
-	8	$\mathrm{D}_{\text {INV }}$	In	Driver invert control (active high). When enabled, the polarity of the driver input pin is inverted causing the driver output $(\mathrm{Y} \& \mathrm{Z})$ polarities to be inverted. When disabled, the driver bus pins ($Y \& Z$) operate normally: $Y=$ non-inverting and $Z=$ inverting. The $D_{\text {INV }}$ pin has a $150 \mathrm{k} \Omega$ pull-down resistor.
-	13	V_{L}	Power	Logic interface power supply.

Pin Functions

XR33156 (Full Duplex - 14 Pins)

Inputs					
Transmitting					
$\mathrm{D}_{\text {INV }}$	$\overline{\mathrm{RE}}$	DE	DI	Y	Z
0	X	1	1	1	0
0	X	1	0	0	1
1	X	1	1	0	1
1	X	1	0	1	0
X	0	0	X	High-Z	
X	1	0	X	High-Z (shutdown)	

XR33156 (Full Duplex - 14 Pins)

Receiving				
$R_{\text {INV }}$	$\overline{R E}$	$D E$	$V_{A}-V_{B}$	RO
0	0	X	$\geq 200 \mathrm{mV}$	1
0	0	X	$\leq-200 m V$	0
0	0	X	Open/shorted	1
1	0	X	$\geq 200 m V$	0
1	0	X	$\leq-200 m V$	1
1	0	X	$O p e n /$ shorted	1
X	1	1	X	High-Z
X	1	0	X	High-Z (shutdown)

XR33152 and XR33158 (Half Duplex - 8 Pins)

Receiving			
Outs			
INV	DE	$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$	RO
0	0	$\geq 200 \mathrm{mV}$	1
0	0	$\leq-200 \mathrm{mV}$	0
1	0	Open/shorted	1
1	0	$\geq+200 \mathrm{mV}$	0
1	0	$\leq-200 \mathrm{mV}$	1
1	0	Open/shorted	1

Electrical Characteristics

Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver DC Characteristics						
V_{CC}	Supply voltage range		3.0		5.5	V
V_{L}	I/O logic supply voltage range	$\mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$	1.65		5.5	V
$V_{O D}$	Differential driver output,$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$	$R_{L}=100 \Omega$ (TIA-422), Figure 4	2		V_{CC}	V
		$R_{L}=54 \Omega$ (TIA-485), Figure 4	1.5		V_{CC}	V
		$-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 25 \mathrm{~V}$, Figure 5	1.5		V_{Cc}	V
$\mathrm{V}_{\text {OD }}$	Differential driver output,$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 4.5 \mathrm{~V}$	$R_{L}=100 \Omega$ (TIA-422), Figure 4	0.85		V_{CC}	V
		$R_{L}=54 \Omega$ (TIA-485), Figure 4	0.65		V_{CC}	V
$\Delta \mathrm{V}_{\text {OD }}$	Change in magnitude of differential output voltage, Note 1	$R L=100 \Omega$ (TIA-422) or RL $=54 \Omega$ (TIA-485), Figure 4			± 0.2	V
V_{CM}	Driver common-mode output voltage (steady state)		1		3	V
$\Delta \mathrm{V}_{\mathrm{CM}}$	Change in magnitude of common-mode output voltage, Note 1				± 0.2	V
V_{IH}	Logic high input thresholds (DI, DE and INV)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, for XR33152/58	2.0			V
		$\mathrm{V}_{C C}=5.0 \mathrm{~V}$, for XR33152/58	2.4			V
$\mathrm{V}_{\text {IL }}$	Logic low input thresholds (DI, DE and INV)	For XR33152/58			0.8	V
V_{IH}	Logic high input thresholds (DI, DE, $\overline{R E}, D_{I N V}$ and $R_{I N V}$)	$\mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\text {CC }}$, for XR33156	$(2 / 3) \mathrm{V}_{\mathrm{L}}$			V
$\mathrm{V}_{\text {IL }}$	Logic low input thresholds (DI, DE, $\overline{R E}, D_{I N V}$ and $R_{\text {INV }}$)	$\mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$, for XR33156			(1/3) V_{L}	V
$\mathrm{V}_{\mathrm{HYS}}$	(DI, DE, $\stackrel{\text { Input hysteresis }}{R E, D_{\text {INV }}, R_{\text {INV }} \text { and INV) }}$			100		mV
I_{N}	Logic input current (DI, DE and $\overline{\mathrm{RE}}$)	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$, for XR33152/58 After first transition, Note 2			± 1	$\mu \mathrm{A}$
	Logic input current (INV)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}$, for XR33152/58	25	33	55	$\mu \mathrm{A}$
	Logic input current (DI, DE and $\overline{\mathrm{RE}}$)	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, for XR33156 }$ After first transition, Note 2			± 1	$\mu \mathrm{A}$
	Logic input current (Dinv and $\mathrm{R}_{\text {INV }}$)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, for XR33156	25	33	55	$\mu \mathrm{A}$
$\mathrm{I}_{\text {INHS }}$	Logic input current hot swap (DE and $\overline{\mathrm{RE}}$)	Until first transition, Note 2		100	± 200	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{A}, \mathrm{B}}$	Input current (A and B)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=12 \mathrm{~V}, \\ \mathrm{DE}=0 \mathrm{~V}, \text { for XR33152 } \end{gathered}$			100	$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=-7 \mathrm{~V}, \\ \mathrm{DE}=0 \mathrm{~V}, \text { for } \mathrm{XR} 33152 \end{gathered}$	-80			$\mu \mathrm{A}$
		$\begin{gathered} \mathrm{V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \text {, for } \mathrm{XR} 33156 / 58 \end{gathered}$			400	$\mu \mathrm{A}$
		$\begin{gathered} V_{\text {OUT }}=-7 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \text {, for } \mathrm{XR} 33156 / 58 \end{gathered}$	-320			$\mu \mathrm{A}$

NOTES:

1. Change in magnitude of differential output voltage and change in magnitude of common mode output voltage are the changes in output voltage when DI input changes state.
2. The hot swap feature disables the DE and RE inputs for the first $10 \mu \mathrm{~s}$ after power is applied. Following this time period, these inputs are weakly pulled to their disabled state (low for DE, high for $\overline{\mathrm{RE}}$) until the first transition, after which they become high impedance inputs.

Electrical Characteristics

Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{l}_{\text {OL }}$	Output leakage (Y and Z) Full duplex	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$ or 5.5 V			100	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=-7 \mathrm{~V}, \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=0 \mathrm{~V}$ or 5.5 V	-80			$\mu \mathrm{A}$
Iosd	Driver short-circuit output current	$-60 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 60 \mathrm{~V}$, Figure 6			± 250	$\mu \mathrm{A}$
Driver Thermal Characteristics						
$\mathrm{T}_{\text {TS }}$	Thermal shutdown temperature	Junction temperature, Note 1		175		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {TSH }}$	Thermal shutdown hysteresis	Note 1		15		${ }^{\circ} \mathrm{C}$
Receiver DC Characteristics						
$\mathrm{V}_{\text {STH }}$	Receiver differential input signal threshold voltage ($\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$)	$-25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V}$		± 85	± 200	mV
$\Delta \mathrm{V}_{\text {STH }}$	Receiver differential input signal hysteresis			170		mV
$\mathrm{V}_{\text {FSTH- }}$	Negative going receiver differential input failsafe threshold voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$	$-25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V}$	-200	-125	-40	mV
$\mathrm{V}_{\mathrm{FSTH}+}$	Positive going receiver differential input failsafe threshold voltage $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$	$-25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V}$		-100	-10	mV
$\Delta \mathrm{V}_{\text {FSTH }}$	Receiver differential input failsafe hysteresis			25		mV
V_{OH}	Receiver output high voltage (RO)	I ${ }_{\text {OUT }}=-4 \mathrm{~mA}$, for $\mathrm{XR33152/58}$	$\mathrm{V}_{\text {CC }}-0.6$			V
VoL	Receiver output low voltage (RO)	$\mathrm{I}_{\text {Out }}=4 \mathrm{~mA}$, for XR33152/58			0.4	V
V_{OH}	Receiver output high voltage (RO)	$\begin{gathered} 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V} \text {, lout }=-4 \mathrm{~mA}, \\ 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.0 \mathrm{~V}, \text { lout }=-1 \mathrm{~mA}, \\ \text { for XR33156 } \end{gathered}$	$\mathrm{V}_{\mathrm{L}}-0.6$			V
$\mathrm{V}_{\text {OL }}$	Receiver output low voltage (RO)	$\begin{gathered} 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 5.5 \mathrm{~V}, \text { lout }=4 \mathrm{~mA}, \\ 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.0 \mathrm{~V}, \text { Iout }=1 \mathrm{~mA}, \\ \text { for XR33156 } \end{gathered}$			0.4	V
IozR	High-Z receiver output current	$\begin{gathered} 0 V \leq V_{\text {OUT }} \leq V_{\text {CC }}, \text { for XR33152/58 } \\ 0 V \leq V_{\text {OUT }} \leq V_{L}, \text { for XR33156 } \end{gathered}$			± 1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	RX input resistance	$-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 25 \mathrm{~V}$, for XR33152	120			k Ω
		$-25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 25 \mathrm{~V}$, for XR33156/58	30			k Ω
Iosc	RX output short-circuit current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$, for XR33152/58			110	mA
	RX output short-circuit current	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{L}}$, for XR33156			110	mA
Supply Current						
ICC	Supply current	No load, $\overline{\mathrm{RE}}=0 \mathrm{~V}$ or V_{CC}, $\mathrm{DE}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{DI}=0 \mathrm{~V}$ or V_{CC}			4	mA
ISHDN	Supply current in shutdown mode	$\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DE}=0 \mathrm{~V}$		0.001	1	$\mu \mathrm{A}$
ESD Protection						
	ESD protection for A, B, Y, and Z	Human body model		± 15		kV
	ESD protection for all other pins	Human body model		± 4		kV

NOTES:

1. This spec is guaranteed by design and bench characterization.

Electrical Characteristics

Driver AC Characteristics - XR33152 (250kbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {DPLH }}$	Driver prop. delay (low to high)	$\begin{gathered} C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=54 \Omega, \\ \text { Figure } 8 \end{gathered}$	350		1500	ns
$\mathrm{t}_{\text {DPHL }}$	Driver prop. delay (high to low)		350		1600	ns
$\left\|\mathrm{t}_{\text {DPLH- }} \mathrm{t}_{\text {DPHL }}\right\|$	Differential driver output skew			20	200	ns
$t_{\text {DR }}, t_{\text {DF }}$	Driver differential output rise or fall time		400		1500	ns
	Maximum data rate	1/tul, duty cycle 40% to 60%	250			kbps
$\mathrm{t}_{\text {DZH }}$	Driver enable to output high	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ \text { Figure } 9 \end{gathered}$		200	2500	ns
$\mathrm{t}_{\text {DZL }}$	Driver enable to output low			200	2500	ns
$\mathrm{t}_{\text {DHZ }}$	Driver disable from output high				250	ns
$t_{\text {DLZ }}$	Driver disable from output low				250	ns
$t_{\text {RZH }}$ (SHDN)	Driver enable from shutdown to output high	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \text {, }$ Figure 9			5500	ns
$t_{\text {RZL(SHDN })}$	Driver enable from shutdown to output low				5500	ns
$\mathrm{t}_{\text {SHDN }}$	Time to shutdown	Notes 1 and 2	50	200	600	ns

Receiver AC Characteristics - XR33152 (250kbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {RPLH }}$	Receiver prop. delay (low to high)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{ID}}= \pm 2 \mathrm{~V},$ $\mathrm{V}_{\text {ID }}$ rise and fall times $<15 \mathrm{~ns}$, Figure 10			200	ns
$\mathrm{t}_{\text {RPHL }}$	Receiver prop. delay (high to low)				200	ns
$\mid t_{\text {RPLH- }}{ }^{\text {R }}$ RPHL ${ }^{\text {a }}$	Receiver propagation delay skew				30	ns
	Maximum data rate	1/tul, duty cycle 40% to 60%	250			kbps

NOTES:

1. The transceivers are put into shutdown by bringing $\overline{R E}$ high and $D E$ low simultaneously for at least 600 ns . If the control inputs are in this state for less than 50 ns , the device is quaranteed to not enter shutdown. If the enable inputs are held in this state for at least 600 ns , the device is ensured to be in shutdown. Note that the receiver and driver enable times increase significantly when coming out of shutdown.
2. This spec is guaranteed by design and bench characterization.

Electrical Characteristics

Driver AC Characteristics - XR33156 and XR33158 (20Mbps)
Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {DPLH }}$	Driver prop. delay (low to high)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=54 \Omega \text {, }$ Figure 8			25	ns
$\mathrm{t}_{\text {DPHL }}$	Driver prop. delay (high to low)				25	ns
$\mid t_{\text {DPLH- }}{ }^{\text {t }}$ DPHL ${ }^{\text {l }}$	Differential driver output skew				5	ns
$t_{\text {DR }}, t_{\text {DF }}$	Driver differential output rise or fall time				15	ns
	Maximum data rate	1/tul, duty cycle 40% to 60%	20			Mbps
$\mathrm{t}_{\text {DZH }}$	Driver enable to output high	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \text {, }$ Figure 9			60	ns
$\mathrm{t}_{\text {DZL }}$	Driver enable to output low				60	ns
$\mathrm{t}_{\text {DHZ }}$	Driver disable from output high				250	ns
t ${ }_{\text {DLZ }}$	Driver disable from output low				250	ns
$t_{\text {DZH }}$ (SHDN)	Driver enable from shutdown to output high	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \text {, }$ Figure 9			2200	ns
$t_{\text {DZL(SHDN }}$	Driver enable from shutdown to output low				2200	ns
$\mathrm{t}_{\text {SHDN }}$	Time to shutdown	Notes 1 and 2	50	200	600	ns

Receiver AC Characteristics - XR33156 and XR33158 (20Mbps)

Unless otherwise noted: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {RPLH }}$	Receiver prop. delay (low to high)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{ID}}= \pm 2 \mathrm{~V},$ $\mathrm{V}_{\text {ID }}$ rise and fall times $<15 \mathrm{~ns}$, Figure 10			60	ns
$\mathrm{t}_{\text {RPHL }}$	Receiver prop. delay (high to low)				60	ns
$\mid t_{\text {RPLH-trehL }}{ }^{\text {d }}$	Receiver propagation delay skew				5	ns
	Maximum data rate	1/tul, duty cycle 40\% to 60\%	20			Mbps
$t_{\text {RZH }}$	Receiver enable to output high	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ Figure 11, for XR33156			50	ns
$t_{\text {RZL }}$	Receiver enable to output low				50	ns
$\mathrm{t}_{\text {RHZ }}$	Receiver disable from output high				50	ns
$t_{\text {RLZ }}$	Receiver disable from output low				50	ns
$t_{\text {RZH }}$ (SHDN)	Receiver enable from shutdown to output high	$C_{L}=15 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega \text {, }$ Figure 11, for XR33156			2200	ns
$t_{\text {RZL(SHDN }}$	Receiver enable from shutdown to output low				2200	ns
$\mathrm{t}_{\text {SHDN }}$	Time to shutdown	Notes 1 and 2, for XR33156	50	200	600	ns

NOTES:

1. The transceivers are put into shutdown by bringing $\overline{R E}$ high and $D E$ low simultaneously for at least 600 ns . If the control inputs are in this state for less than 50 ns, the device is guaranteed to not enter shutdown. If the enable inputs are held in this state for at least 600 ns , the device is ensured to be in shutdown. Note that the receiver and driver enable times increase significantly when coming out of shutdown.
2. This spec is guaranteed by design and bench characterization.

Applications Information

Figure 2. Half Duplex (XR33152, and XR33158)

Figure 3. Full Duplex (XR33156)

Figure 4. Differential Driver Output Voltage

Figure 5. Differential Driver Output Voltage Over Common Mode

Applications Information

Figure 6. Driver Output Short Circuit Current

Figure 7. Transient Overvoltage Test Circuit

Figure 8. Driver Propagation Delay Test Circuit and Timing Diagram

Applications Information

DE

VOUT

Figure 9. Driver Enable and Disable Timing Test Circuits and Timing Diagrams

Applications Information

Figure 10. Receiver Propagation Delay Test Circuit and Timing Diagram

Applications Information

Figure 11. Receiver Enable and Disable Test Circuits and Timing Diagrams

Applications Information

The XR33152/56/58 TIA-485/TIA-422 devices are part of Exar's high performance serial interface product line. The analog bus pins can survive direct shorts up to $\pm 60 \mathrm{~V}$ and are protected against ESD events up to $\pm 15 \mathrm{kV}$.

Enhanced Failsafe

Ordinary TIA-485 differential receivers will be in an indeterminate state whenever the data bus is not being actively driven. The enhanced failsafe feature of the XR33152/56/58 family guarantees a logic-high receiver output when the receiver inputs are open, shorted or when they are connected to a terminated transmission line with all drivers disabled. In a terminated bus with all transmitters disabled, the receivers' differential input voltage is pulled to OV by the termination. The XR33152/56/58 family interprets OV differential as a logic high with a minimum 50 mV noise margin while maintaining compliance with the TIA-485 standard of $\pm 200 \mathrm{mV}$. Although the XR33152/56/58 family does not need failsafe biasing resistors, it can operate without issue if biasing is used.

Receiver Input Filtering

The XR33152 receivers incorporate internal filtering in addition to input hysteresis. This filtering enhances noise immunity by ignoring signals that do not meet a minimum pulse width of 30 ns. Receiver propagation delay increases slightly due to this filtering. The high speed XR33156 and XR33158 devices do not have this input filtering.

Hot Swap Capability

When V_{CC} is first applied the XR33152/56/58 family holds the driver enable and receiver enable inactive for approximately $10 \mu \mathrm{~s}$. During power ramp-up, other system ICs may drive unpredictable values or tristated lines may be influenced by stray capacitance. The hot swap feature prevents the XR33152/56/58 family from driving any output signal until power has stabilized. After the initial $10 \mu \mathrm{~s}$, the driver and receiver enable pins are weakly pulled to their disabled states (low for DE and high for RE) until the first transition. After the first transition, the DE and $\overline{\mathrm{RE}}$ pins operate as high impedance inputs.
If circuit boards are inserted into an energized backplane (commonly called "live insertion" or "hot swap") power may suddenly be applied to all circuits. Without the hot swap capability, this situation could improperly enable the transceiver's driver or receiver, driving invalid data onto shared buses and possibly causing driver contention or device damage.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. First, a driver current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range. Second, a thermal shutdown
circuit forces the driver outputs into a high impedance state if junction temperature becomes excessive.

Line Length

The TIA-485/TIA-422 standard covers line lengths up to 4000 ft . Maximum achievable line length is a function of signal attenuation and noise. Termination prevents signal reflections by eliminating the impedance mismatches on a transmission line. Line termination is generally used if rise and fall times are shorter than the round trip signal propagation time. Higher output drivers may allow longer cables to be used.

$\pm 15 \mathrm{kV}$ ESD Protection

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the XR33152/56/58 family has extra protection against static electricity. Exar uses state-of-theart structures to protect these pins against ESD of $\pm 15 \mathrm{kV}$ without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown and powered down. After an ESD event, the XR33152/56/58 keep operating without latch up or damage.
ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the XR33152/56/58 are characterized for protection to the following limits:
$\square \pm 15 \mathrm{kV}$ using the Human Body Model, TIA-485 bus pins
$\square \pm 4 \mathrm{kV}$ using the Human Body Model, all other pins

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Exar for a reliability report that documents test setup, methodology and results.

Maximum Number of Transceivers on the Bus

The standard TIA-485 receiver input impedance is $12 \mathrm{k} \Omega$ (1 unit load). A standard driver can drive up to 32 unit loads. The XR33152 transceiver has a 1/10th unit load receiver input impedance of $120 \mathrm{k} \Omega$, allowing up to 320 transceivers to be connected in parallel on a communication line. The XR33156/58 transceivers have a 1/2.5 unit load receiver input impedance of $30 \mathrm{k} \Omega$, allowing up to 80 transceivers to be connected in parallel on a communication line. Any combination of these devices and other TIA-485 transceivers up to a total of 32 unit loads may be connected to the line.

Applications Information

Low Power Shutdown Mode

The XR33156 has a low-power shutdown mode that is initiated by bringing both $\overline{\text { RE }}$ high and DE low simultaneously. While in shutdown the XR33156 draws less than $1 \mu \mathrm{~A}$ of supply current. DE and $\overline{\mathrm{RE}}$ may be tied together and driven by a single control signal. Devices are guaranteed not to enter shutdown if $\overline{\mathrm{RE}}$ is high and $D E$ is low for less than 50 ns . If the inputs are in this state for at least 600 ns , the parts will enter shutdown.

XR33156 enable times, t_{ZH} and t_{ZL}, apply when the part is not in low power shutdown state. Enable times, $\mathrm{t}_{\mathrm{zH}}(\mathrm{sHDN})$ and $\mathrm{tzL}_{(\mathrm{SHDN})}$ apply when the part is shutdown. The driver and receiver take longer to become enabled from low power shutdown $\mathrm{t}_{\mathrm{ZH}}(\mathrm{SHDN})$ and $\mathrm{tzL}_{\text {(SHDN }}$) than from driver or receiver disable mode (t_{ZH} and t_{ZL}).

Product Selector Guide

Part Number	Operation	Data Rate	Shutdown	Receiver/Driver Enable	Nodes On Bus	Footprint
XR33152	Half duplex		No	No/Yes	320	8-NSOIC
XR33156	Full duplex	20 Mbps	Yes	Yes/Yes	80	14-NSOIC
	XR33158			No	No/Yes	80
8-NSOIC						

Package Description

8-Pin NSOIC Package

TOP VIEW

SIDE VIEW

RECOMMENDED PCB LAND PATTERN

FRONT VIEW

Package Description

14-Pin NSOIC Package

SIDE VIEW

14-Pin NSOIC (JEDEC MS-012)

Symbols	Dimension in mm (Control unit)			Dimension in inches (Reference unit)		
	Min	Nom	Max	Min	Nom	Max
A	1.35	-	1.75	0.053	-	0.069
A1	0.10	-	0.25	0.004	-	0.010
A2	1.25	-	1.65	0.049	-	0.065
b	0.31	-	0.51	0.012	-	0.020
c	0.17	-	0.25	0.007	-	0.010
E	6.00 BSC			0.236 BSC		
E1	3.90 BSC			0.154 BSC		
e	1.27 BSC			0.050 BSC		
h	0.25	-	0.50	0.010	-	0.020
L	0.40	-	1.27	0.016	-	0.050
L1	1.04 Ref			0.041 Ref		
L2	0.25 BSC			0.010 BSC		
R	0.07	-	-	0.003	-	-
R1	0.07	-	-	0.003	-	-
θ	0°	-	8°	0°	-	8°
$\theta 1$	5°	-	15°	5°	-	15°
$\theta 2$	0°	-	-	0°	-	-
D	8.65 BSC			0.341 BSC		
N	14			14		

Order Information

Part Number	Operation	Data Rate	Package	Environmental Rating	Operating Temperature Range
XR33152ID-F				Green/RoHS	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
XR33152IDTR-F	Half duplex	250 kbps	8-pin SOIC		
XR33156ID-F	Full duplex	20Mbps	14-pin SOIC		
XR33156IDTR-F					
XR33158ID-F	Half duplex		8-pin SOIC		
XR33158IDTR-F	Half duplex		8-pin		

48760 Kato Road

Fremont, CA 94538
USA

Tel.: +1 (510) 668-7000
Fax: +1 (510) 668-7001
Email: support@exar.com

Exar Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Exar Corporation conveys no license under any patent or other right and makes no representation that the circuits are free of patent infringement. While the information in this publication has been carefully checked, no responsibility, however, is assumed for inaccuracies.
Exar Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Exar Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of Exar Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of Exar Corporation is prohibited. Exar, XR and the XR logo are registered trademarks of Exar Corporation. All other trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Exar:

XR33152ID-F XR33156ID-F XR33152IDTR-F XR33158ID-F XR33156IDTR-F XR33158IDTR-F

