

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

November 2009

FAN7371 High-Current High-Side Gate Drive IC

Features

- Floating Channel for Bootstrap Operation to +600V
- 4A/4A Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- 3.3V and 5V Input Logic Compatible
- Output In-phase with Input Signal
- Under- Voltage Lockout for V_{BS}
- 25V Shunt Regulator on V_{DD} and V_{BS}
- 8-Lead Small Outline Package (SOP)

Applications

- High-Speed Gate Driver
- Sustaine Switch Driver in PDP Application
- Energy-Recovery Circuit Switch Driver in PDP Application
- High-Power Buck Converter
- Motor Drive Inverter

Description

The FAN7371 is a monolithic high-side gate drive IC, which can drive high-speed MOSFETs and IGBTs that operate up to +600V. It has a buffered output stage with all NMOS transistors designed for high pulse current driving capability and minimum cross-conduction.

Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level-shift circuit offers high-side gate driver operation up to V_S =-9.8V (typical) for V_{BS} =15V.

The UVLO circuit prevents malfunction when V_{BS} is lower than the specified threshold voltage.

The high-current and low-output voltage drop feature makes this device suitable for sustaine switch driver and energy recovery switch driver in the Plasma Display Panel application, motor drive inverter, switching power supply, and high-power DC-DC converter applications.

8-SOP

Ordering Information

Part Number	Package	Operating Temperature Range	© Eco Status	Packing Method	
FAN7371M ⁽¹⁾	8-SOP	-40°C ~ 125°C	RoHS	Tube	
FAN7371MX ⁽¹⁾	0-3UP	-40 C ~ 125 C	KUHS	Tape & Reel	

Note:

1. These devices passed wave soldering test by JESD22A-111.

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Typical Application Diagrams

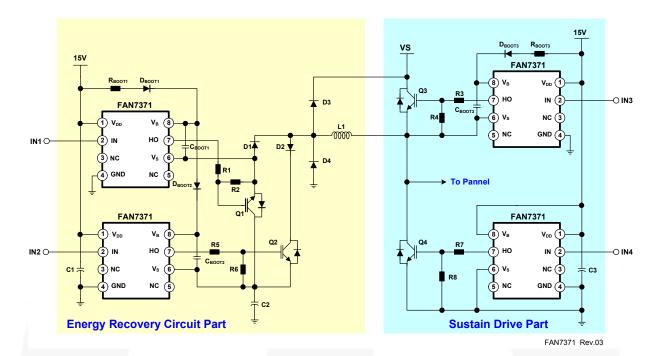


Figure 1. Floated Bidirectional Switch and Half-Bridge Driver: PDP application

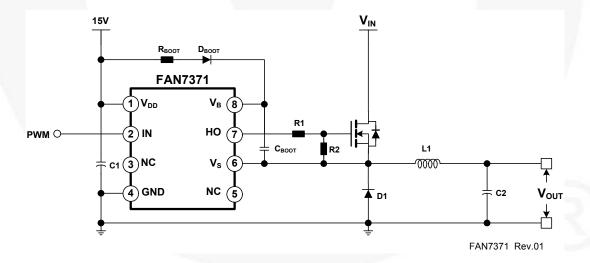


Figure 2. Step-Down (Buck) DC-DC Converter Application

Internal Block Diagram

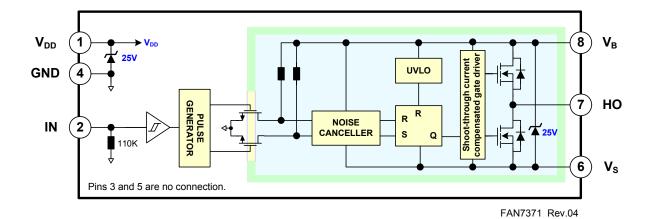


Figure 3. Functional Block Diagram

Pin Configuration

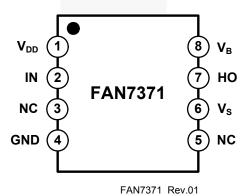


Figure 4. Pin Configuration (Top View)

Pin Definitions

Pin #	Name	Description	
1	V_{DD}	Supply Voltage	
2	IN	Logic Input for High-Side Gate Driver Output	
3	NC	No Connection	
4	GND	Ground	
5	NC	No Connection	
6	V _S	High-Voltage Floating Supply Return	
7	НО	High-Side Driver Output	
8	V _B	High-Side Floating Supply	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$ unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Floating Offset Voltage	V _B -V _{SHUNT}	V _B +0.3	V
V _B	High-Side Floating Supply Voltage ⁽²⁾	-0.3	625.0	V
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{DD}	Low-Side and Logic Supply Voltage ⁽²⁾	-0.3	V _{SHUNT}	V
V _{IN}	V _{IN} Logic Input Voltage		V _{DD} +0.3	V
dV _S /dt	Allowable Offset Voltage Slew Rate		± 50	V/ns
P _D Power Dissipation ^(3, 4, 5)		100	0.625	W
θ_{JA}	Thermal Resistance		200	°C/W
TJ	Junction Temperature	-55	+150	°C
T _{STG}	Storage Temperature	-55	+150	°C
T _A	Operating Ambient Temperature	-40	+125	°C

Notes:

- 2 This IC contains a shunt regulator on V_{DD} and V_{BS} with a normal breakdown voltage of 25V. Please note that this supply pin should not be driven by a low-impedance voltage source greater than the V_{SHUNT} specified in the Electrical Characteristics section
- 3 Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material).
- 4 Refer to the following standards:
 JESD51-2: Integral circuits thermal test method environmental conditions, natural convection, and
 JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages.
- 5 Do not exceed power dissipation (P_D) under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

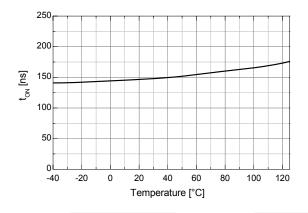
Symbol	Symbol Parameter		Max.	Unit
V _{BS}	High-Side Floating Supply Voltage	V _S +10	V _S +20	V
V _S	High-Side Floating Supply Offset Voltage	6-V _{DD}	600	V
V _{HO}	High-Side Output Voltage	V _S	V _B	V
V _{IN}	Logic Input Voltage	GND	V_{DD}	V
V_{DD}	Supply Voltage	10	20	V

Electrical Characteristics

 $V_{BIAS}(V_{DD}, V_{BS})$ =15.0V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are relative to V_S and are applicable to the respective output HO.

Symbol Characteristics		Test Condition	Min.	Тур.	Max.	Unit
POWER S	SUPPLY SECTION	-		ı		ı
I_{QDD}	Quiescent V _{DD} Supply Current	V _{IN} =0V or 5V		25	70	μА
I_{PDD}	Operating V _{DD} Supply Current	f _{IN} =20KHz, No Load		35	100	μΑ
BOOTST	RAPPED SUPPLY SECTION			ı		ı
V _{BSUV+}	V _{BS} Supply Under-Voltage Positive Going Threshold Voltage	V _{BS} =Sweep	8.2	9.2	10.2	V
V _{BSUV} -	V _{BS} Supply Under-Voltage Negative Going Threshold Voltage	V _{BS} =Sweep	7.5	8.5	9.5	V
$V_{\rm BSHYS}$	V _{BS} Supply Under-Voltage Lockout Hysteresis Voltage	V _{BS} =Sweep		0.7		V
I _{LK}	Offset Supply Leakage Current	V _B =V _S =600V			10	μΑ
I _{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V		60	120	μΑ
I _{PBS}	Operating V _{BS} Supply Current	C _{LOAD} =1nF, f _{IN} =20KHz, rms Value		1.0	2.8	mA
SHUNT R	EGULATOR SECTION		-	l.		l
V _{SHUNT}	V _{DD} and V _{BS} Shunt Regulator Clamping Voltage	I _{SHUNT} =5mA	24	25		V
INPUT LC	OGIC SECTION					
V _{IH}	Logic "1" Input Voltage		2.5			V
V_{IL}	Logic "0" Input Voltage				8.0	V
I _{IN+}	Logic Input High Bias Current	V _{IN} =5V		45	70	μΑ
I _{IN-}	Logic Input Low Bias Current	V _{IN} =0V			2	μΑ
R _{IN}	Input Pull-down Resistance		70	110		ΚΩ
GATE DR	IVER OUTPUT SECTION			ı		
V_{OH}	High Level Output Voltage (V _{BIAS} - V _O)	No Load			1.2	V
V_{OL}	Low Level Output Voltage	No Load	7		30	mV
I _{O+}	Output High, Short-Circuit Pulsed Current ⁽⁶⁾	V _{HO} =0V, V _{IN} =5V, PW ≤10μs	3.0	4.0		Α
I _{O-}	Output Low, Short-Circuit Pulsed Current ⁽⁶⁾	V _{HO} =15V,V _{IN} =0V, PW ≤10μs	3.0	4.0		Α
V _S	Allowable Negative V _S pin Voltage for IN Signal Propagation to HO			-9.8	-7.0	V

Note:


6 These parameters guaranteed by design.

Dynamic Electrical Characteristics

 V_{DD} = V_{BS} =15V, GND=0V, C_{LOAD} =1000pF, T_{A} =25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Delay Time	V _S =0V		150	210	ns
t _{off}	Turn-off Propagation Delay Time	V _S =0V		150	210	ns
t _r	Turn-on Rise Time			25	50	ns
t _f	Turn-off Fall Time			15	40	ns

Typical Characteristics

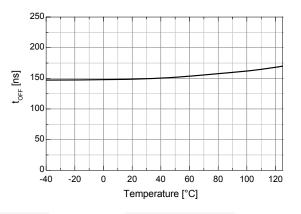
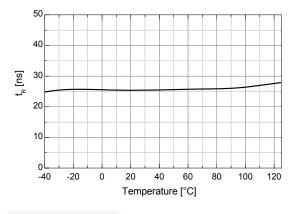



Figure 5. Turn-on Propagation Delay vs. Temperature

Figure 6. Turn-off Propagation Delay vs. Temperature

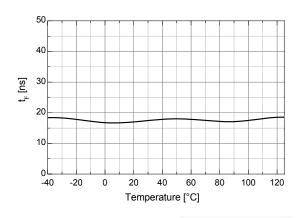
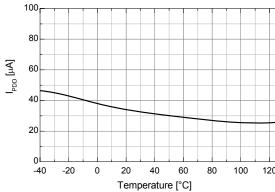



Figure 7. Turn-on Rise Time vs. Temperature

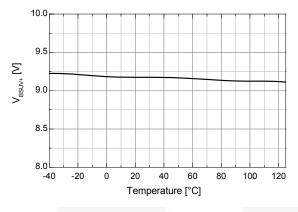
Figure 8. Turn-off Fall Time vs. Temperature

vs. Temperature

Figure 9. Operating V_{DD} Supply Current

O.0.0

O.


Figure 10. Operating V_{BS} Supply Current vs. Temperature

2.0

1.5

0.5

Typical Characteristics (Continued)

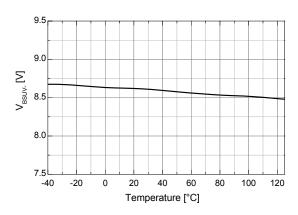
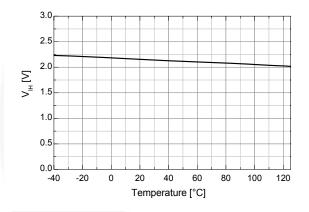



Figure 11. V_{BS} UVLO+ vs. Temperature

Figure 12. V_{BS} UVLO- vs. Temperature

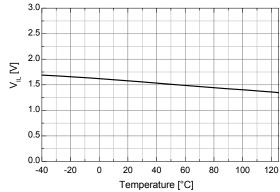


Figure 13. Logic High Input Voltage vs. Temperature

Figure 14. Logic Low Input Voltage vs. Temperature

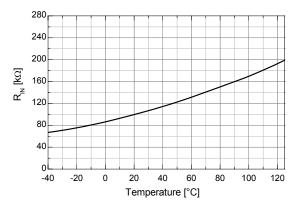


Figure 15. Input Pull-Down Resistance vs.Temperature.

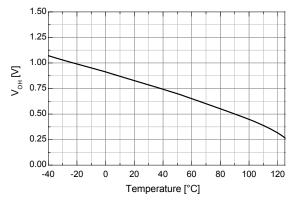


Figure 16. High-Level Output Voltage vs. Temperature

Typical Characteristics (Continued)

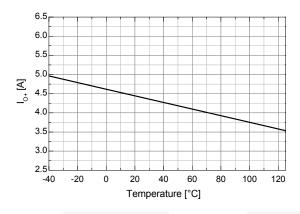
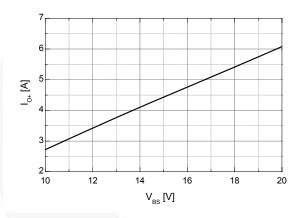



Figure 17. Output High, Short-Circuit Pulsed Current vs. Temperature

Figure 18. Output Low, Short-Circuit Pulsed Current vs. Temperature

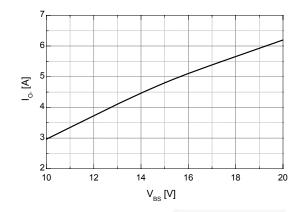
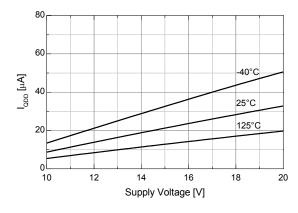



Figure 19. Output High, Short-Circuit Pulsed Current vs. Supply Voltage

Figure 20. Output Low, Short-Circuit Pulsed Current vs. Supply Voltage

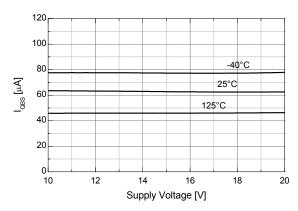


Figure 21. Quiescent V_{DD} Supply Current vs. Supply Voltage

Figure 22. Quiescent V_{BS} Supply Current vs. Supply Voltage

Switching Time Definitions

Timing Diagram

Figure 23. Switching Time Test Circuit and Waveform Definitions

Physical Dimensions

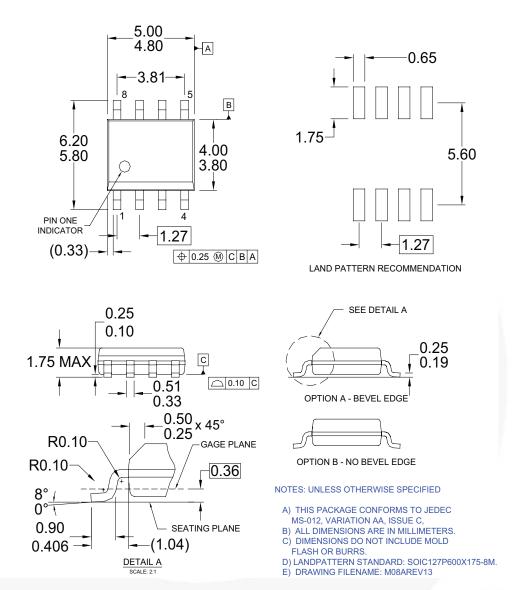


Figure 24. 8-Lead Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™

EcoSPARK' EfficientMax™ EZSWITCH™*

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT® FAST® FastvCore™

FETBench™

FlashWriter® FPS™ F-PFS™ FRFET®

Global Power Resource sm Green FPS™ Green FPS™ e-Series™

 $Gmax^{TM}$ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroEET* MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC®

PDP SPM™

OPTOPLANAR®

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFET QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™

SuperFET™ SuperSOT™3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™

SYSTEM ®** The Power Franchise® wer franchise

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO** TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT***

μSerDes™ UHC Ultra FRFET™ UniFET™ **VCXTM** VisualMax™ XSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	Data sheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make ch at any time without notice to improve the design.	
		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.	

Rev. 143

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FAN7371MX FAN7371M