Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
FAN73894
 3-Phase Half-Bridge Gate-Drive IC

Features

- Floating Channel for Bootstrap Operation to +600 V
- Typically $350 \mathrm{~mA} / 650 \mathrm{~mA}$ Sourcing/Sinking Current-Driving Capability for All Channels
- Extended Allowable Negative V_{S} Swing to -9.8 V for Signal Propagation at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{BS}}=15 \mathrm{~V}$
- Outputs Out of Phase with Input Signals
- Over-Current Shutdown Turns Off All Six Drivers
- Matched Propagation Delay for All Channels
- 3.3 V and 5.0 V Input Logic Compatible
- Adjustable Fault-Clear Timing
- Signal Interlocking of Every Phase to Prevent Cross-Conduction
- Common-Mode $\mathrm{dV}_{\mathrm{s}} /$ dt Noise-Canceling Circuit
- Built-in Advanced Input Filter
- Built-in Soft Turn-Off Function
- Built-in Under-Voltage Lockout (UVLO) Functions for All Channels

Applications

- 3-Phase Motor Inverter Driver
- Air Conditioner, Washing Machine, Refrigerator, Dish Washer
- Industrial Inverter - Sewing Machine, Power Tool
- General-Purpose Three-Phase Inverter

Description

The FAN73894 is a monolithic three-phase half-bridge gate-drive IC designed for high-voltage, high-speed, driving MOSFETs and IGBTs operating up to +600 V .

Fairchild's high-voltage process and common-mode noise-canceling technique provide stable operation of high-side drivers under high $-\mathrm{dV}_{\mathrm{s}} / \mathrm{dt}$ noise circumstances.

An advanced level-shift circuit allows high-side gate driver operation up to $\mathrm{V}_{\mathrm{S}}=-9.8 \mathrm{~V}$ (typical) for $\mathrm{V}_{\mathrm{BS}}=15 \mathrm{~V}$.
The protection functions include under-voltage lockout, inter-lock function and inverter over-current trip with an automatic fault-clear function. Over-current protection that terminates all six outputs can be derived from an external current-sense resistor. An open-drain fault signal is provided to indicate that an over-current or under-voltage shutdown has occurred. The UVLO circuits prevent malfunction when $V_{D D}$ and $V_{B S}$ are lower than the threshold voltage.

Output drivers typically source and sink 350 mA and 650 mA , respectively; which is suitable for three-phase half-bridge applications in motor drive systems.

28-SOIC

Ordering Information

Part Number	Package	Operating Temperature	Packing Method
FAN73894MX ${ }^{(1)}$	28-Lead, Small Outline Integrated Circuit, (SOIC)	-40 to $+125^{\circ} \mathrm{C}$	Tape \& Reel

Note:

1. These devices passed wave-soldering test by JESD22A-111.

Typical Application Diagram

Figure 1. 3-Phase BLDC Motor Drive Application
Internal Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

Figure 3. Pin Assignments

Pin Definitions

Pin	Name	Description
1	$V_{D D}$	Logic and low-side gate driver power supply voltage
2	HIN1	Logic Input 1 for high-side gate 1 driver
3	HIN2	Logic Input 2 for high-side gate 2 driver
4	HIN3	Logic Input 3 for high-side gate 3 driver
5	LIN1	Logic Input 1 for low-side gate 1 driver
6	LIN2	Logic Input 2 for low-side gate 2 driver
7	LIN3	Logic Input 3 for low-side gate 3 driver
8	$\overline{\mathrm{FO}}$	Fault output with open drain (indicates over-current and low-side under-voltage)
9	CS	Analog input for over-current shutdown
10	EN	Logic input for shutdown functionality
11	RCIN	An external RC network input used to define the fault-clear delay
12	$\mathrm{V}_{\text {SS }}$	Logic ground
13	COM	Low-side driver return
14	LO3	Low-side gate driver 3 output
15	LO2	Low-side gate driver 2 output
16	LO1	Low-side gate driver 1 output
17, 21, 25	NC	No connect
18	$\mathrm{V}_{\mathrm{S} 3}$	High-side driver 3 floating supply offset voltage
19	HO3	High-side driver 3 gate driver output
20	$\mathrm{V}_{\text {B3 }}$	High-side driver 3 floating supply
22	$\mathrm{V}_{\mathrm{S} 2}$	High-side driver 2 floating supply offset voltage
23	HO2	High-side driver 2 gate driver output
24	$\mathrm{V}_{\mathrm{B} 2}$	High-side driver 2 floating supply
26	$\mathrm{V}_{\mathrm{S} 1}$	High-side driver 1 floating supply offset voltage
27	HO1	High-side driver 1 gate driver output
28	$\mathrm{V}_{\mathrm{B} 1}$	High-side driver 1 floating supply

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Min.	Max.	Unit
V_{S}	High-Side Floating Offset Voltage	$\mathrm{V}_{\mathrm{B} 1,2,3}-25$	$\mathrm{V}_{\mathrm{B} 1,2,3}+0.3$	V
V_{B}	High-Side Floating Supply Voltage	-0.3	625.0	V
$V_{D D}$	Low-Side and Logic-Fixed supply voltage	-0.3	25.0	V
V_{HO}	High-Side Floating Output Voltage $\mathrm{V}_{\text {H01,2,3 }}$	$\mathrm{V}_{\text {S } 1,2,3}-0.3$	$\mathrm{V}_{\mathrm{BB} 1,2,3}+0.3$	V
V LO	Low-Side Floating Output Voltage $\mathrm{V}_{\text {LO1,2,3 }}$	-0.3	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage ($\overline{\mathrm{HINx}}, \overline{\text { LINx }}, \mathrm{CS}$, and EN) ${ }^{(2)}$	$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\text {SS }}+5.5$	V
V_{FO}	Fault Output Voltage ($\overline{\mathrm{FO}}$)	-0.3	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
dV $\mathrm{S}_{\text {/ }} \mathrm{dt}$	Allowable Offset Voltage Slew Rate		± 50	V/ns
PD	Power Dissipation ${ }^{(3,4)}$		1.4	W
$\theta_{\text {JA }}$	Thermal Resistance		70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{J}	Junction Temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-55	150	${ }^{\circ} \mathrm{C}$

Notes:

2. All input voltage ($\overline{H I N x}, \overline{L I N x}, C S$, and $E N$) are referenced to $V_{S S}$ and do not exceed maximum voltage rating.
3. Mounted on $76.2 \times 114.3 \times 1.6 \mathrm{~mm}$ PCB (FR-4 glass epoxy material). Refer to the following standards:

JESD51-2: Integral circuit's thermal test method environmental conditions, natural convection;
JESD51-3: Low effective thermal conductivity test board for leaded surface-mount packages.
4. Do not exceed maximum power dissipation (P_{D}) under any circumstances.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{V}_{\mathrm{B} 1,2,3}$	High-Side Floating Supply Voltage	$\mathrm{V}_{\mathrm{S} 1,2,3}+10$	$\mathrm{~V}_{\mathrm{S} 1,2,3}+20$	V
$\mathrm{~V}_{\mathrm{S} 1,2,3}$	High-Side Floating Supply Offset Voltage	$6-\mathrm{V}_{\mathrm{DD}}$	600	V
$\mathrm{~V}_{\mathrm{DD}}$	Low-Side and Logic Fixed Supply Voltage	12	20	V
$\mathrm{~V}_{\mathrm{HO1}, 2,3}$	High-Side Output Voltage	$\mathrm{V}_{\mathrm{S} 1,2,3}$	$\mathrm{~V}_{\mathrm{B} 1,2,3}$	V
$\mathrm{~V}_{\mathrm{LO} 1,2,3}$	Low-Side Output Voltage	COM	V_{DD}	V
V_{FO}	Fault Output Voltage ($\overline{\mathrm{FO}})$	V_{SS}	V_{DD}	V
V_{CS}	Current-Sense Pin Input Voltage	V_{SS}	$\mathrm{V}_{\mathrm{SS}}+5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Logic Input Voltage ($\overline{\text { HIN1,2,3 }}$ and $\overline{\text { LIN1,2,3 }})$	V_{SS}	$\mathrm{V}_{\mathrm{SS}}+5$	V
$\mathrm{~V}_{\mathrm{SS}}$	Logic Ground	-5	5	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature	-40	+125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{BS} 1,2,3}\right)=15.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. The $\mathrm{V}_{\text {IN }}$ and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels. The V_{O} and I_{O} parameters are referenced to $\mathrm{V}_{\mathrm{S} 1,2,3}$ and COM and are applicable to the respective output leads: $\mathrm{HO} 1,2,3$ and $\mathrm{LO} 1,2,3$. The $\mathrm{V}_{\text {DDUv }}$ parameters are referenced to $\mathrm{V}_{\text {Ss }}$. The $\mathrm{V}_{\text {BSUV }}$ parameters are referenced to $\mathrm{V}_{\mathrm{S} 1,2,3}$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Low-Side Power Supply Section						
lado	Quiescent V ${ }_{\text {DD }}$ Supply Current	VLIN $, 2,3=5 \mathrm{~V}$ or open, EN=0 V		250	400	$\mu \mathrm{A}$
IPDD	Operating $\mathrm{V}_{\text {DD }}$ Supply Current	$\mathrm{flnv}, 2,3^{\text {a }}$ =20 kHz, rms Value		550	750	$\mu \mathrm{A}$
$\mathrm{V}_{\text {douv }}+$	$V_{D D}$ Supply Under-Voltage Positive-Going Threshold	$\mathrm{V}_{\mathrm{DD}}=$ Sweep	9.7	11.0	12.0	V
V douv.	$V_{D D}$ Supply Under-Voltage Negative-Going Threshold	$V_{\text {DD }}=$ Sweep	9.2	10.5	11.4	V
V ${ }_{\text {dihys }}$	$V_{D D}$ Supply Under-Voltage Lockout Hysteresis	$V_{\text {DD }}=$ Sweep		0.5		V
Bootstrapped Power Supply Section						
$\mathrm{V}_{\text {BSUV }}$	$\mathrm{V}_{\text {BS }}$ Supply Under-Voltage Positive-Going Threshold	$\mathrm{V}_{\text {BS } 1,2,3}=$ Sweep	9.7	11.0	12.0	V
VBSUV-	$\mathrm{V}_{\text {BS }}$ Supply Under-Voltage Negative-Going Threshold	$\mathrm{V}_{\text {BS } 1,2,3}=$ Sweep	9.2	10.5	11.4	V
$\mathrm{V}_{\text {BSHYs }}$	VBS Supply Under-Voltage Lockout Hysteresis	$\mathrm{V}_{\text {BS } 1,2,3}=$ Sweep		0.5		V
LK	Offset Supply Leakage Current	$\mathrm{V}_{\mathrm{B} 1,2,3}=\mathrm{V}_{\mathrm{S} 1,2,3}=600 \mathrm{~V}$			10	$\mu \mathrm{A}$
labs	Quiescent V ${ }_{\text {BS }}$ Supply Current	$\mathrm{V}_{\text {HIN } 1,2,3}=0 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}$	10	50	80	$\mu \mathrm{A}$
lpbs	Operating $\mathrm{V}_{\text {BS }}$ Supply Current	$\mathrm{f}_{\mathrm{HIN}, 2,2}=20 \mathrm{kHz}$, rms Value	200	320	480	$\mu \mathrm{A}$

Gate Driver Output Section

V_{OH}	High-Level Output voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\text {O }}$	$\mathrm{l}_{\mathrm{o}}=0 \mathrm{~mA}$ (No Load)			100	mV
Vol	Low-Level Output voltage, V_{0}	$\mathrm{l}_{\mathrm{o}}=0 \mathrm{~mA}$ (No Load)			100	mV
$10+$	Output HIGH Short-Circuit Pulse Current ${ }^{(5)}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ with PW $\leq 10 \mu \mathrm{~s}$	250	350		mA
Io.	Output LOW Short-Circuit Pulsed Current ${ }^{(5)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{\prime}}=5 \mathrm{~V} \text { with } \\ & \mathrm{PW} \leq 10 \mu \mathrm{~s} \end{aligned}$	500	650		mA
$\mathrm{V}_{\text {S }}$	Allowable Negative V_{S} Pin Voltage for HIN Signal Propagation to HO			-9.8	-9.0	V
Logic Input Section						
V_{IH}	Logic "0" Input Voltage $\overline{\text { HIN1,2,3 }}$, $\overline{\text { LIN1,2,3 }}$		2.5			V
$\mathrm{V}_{\text {IL }}$	Logic "1" Input Voltage $\overline{\text { HIN1,2,3 }}$, $\overline{\text { LIN1,2,3 }}$				0.8	V
$\mathrm{I}_{1 \times+}$	Logic Input Bias Current ($\mathrm{HO}=\mathrm{LO}=\mathrm{HIGH}$)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	77	100	143	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{N} \text { - }}$	Logic Input Bias Current (HO=LO=LOW)	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		8.5	25.0	$\mu \mathrm{A}$
RIN	Logic Input Pull-Up Resistance		35	50	65	$\mathrm{K} \Omega$

Enable Control Section (EN)

$\mathrm{V}_{\mathrm{EN}+}$	Enable Positive-Going Threshold Voltage		2.5			V
$\mathrm{~V}_{\mathrm{EN}-}$	Enable Negative-Going Threshold Voltage				0.8	V
$\mathrm{I}_{\mathrm{EN}+}$	Logic Enable "1" Input Bias Current	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}($ Pull-Down=150K $\Omega)$	15	33	50	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{EN}-}$	Logic Enable "0" Input Bias Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$			2	$\mu \mathrm{~A}$
R_{EN}	Logic Input Pull-Down Resistance		100	150	333	$\mathrm{~K} \Omega$

Electrical Characteristics

$\mathrm{V}_{\text {BIAS }}\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{BS} 1,2,3}\right)=15.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. The $\mathrm{V}_{\text {IN }}$ and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels. The V_{O} and I_{O} parameters are referenced to $\mathrm{V}_{\mathrm{S} 1,2,3}$ and COM and are applicable to the respective output leads: $\mathrm{HO} 1,2,3$ and $\mathrm{LO} 1,2,3$. The $\mathrm{V}_{\text {DDUv }}$ parameters are referenced to $\mathrm{V}_{\text {Ss }}$. The $\mathrm{V}_{\mathrm{BSUV}}$ parameters are referenced to $\mathrm{V}_{\mathrm{S} 1,2,3}$.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
Over-Current Protection Section						
$\mathrm{V}_{\mathrm{CSTH}+}$	Over-Current Detect Positive Threshold		450	500	550	mV
$\mathrm{V}_{\text {CSTH- }}$	Over-Current Detect Negative Threshold			440		mV
$\mathrm{V}_{\text {CSHYS }}$	Over-Current Detect Hysteresis			60		mV
$\mathrm{I}_{\text {csin }}$	Short-Circuit Input Current	$\mathrm{V}_{\text {CSIN }}=1 \mathrm{~V}$	5	10	15	$\mu \mathrm{A}$
ISOFT	Soft Turn-Off Sink Current		25	40	55	mA

Fault Output Section

$\mathrm{V}_{\text {RCINTH }}$	RCIN Positive-Going Threshold Voltage		2.7	3.3	3.9	V
$\mathrm{~V}_{\text {RCINTH- }}$	RCIN Negative-Going Threshold Voltage ${ }^{(5)}$			2.6		V
$\mathrm{~V}_{\text {RCINHYS }}$	RCIN Hysteresis Voltage ${ }^{(5)}$			0.7		V
$\mathrm{I}_{\mathrm{RCIN}}$	RCIN Internal Current Source	$\mathrm{C}_{\text {RCIN }}=2 \mathrm{nF}$	3	5	7	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {FOL }}$	Fault Output Low Level Voltage	$\mathrm{V}_{\mathrm{CS}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{FO}}=1.5 \mathrm{~mA}$		0.2	0.5	V
$\mathrm{R}_{\text {DSRCIN }}$	RCIN On Resistance	$\mathrm{I}_{\mathrm{RCIN}}=1.5 \mathrm{~mA}$	50	75	100	Ω
$\mathrm{R}_{\mathrm{DSFO}}$	Fault Output On Resistance	$\mathrm{I}_{\mathrm{FO}}=1.5 \mathrm{~mA}$	90	130	170	Ω

Note:
5. These parameters are guaranteed by design.

Dynamic Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{BS} 1,2,3}\right)=15.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1,2,3}=\mathrm{COM}=\mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{RCIN}}=2 \mathrm{nF}$, and $\mathrm{C}_{\text {Load }}=1000 \mathrm{pF}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
ton	Turn-On Propagation Delay	$\mathrm{V}_{\mathrm{LIN} 1,2,3}=\mathrm{V}_{\text {HIN } 1,2,3}=0 \mathrm{~V}, \mathrm{~V}_{\text {S } 1,2,3}=0 \mathrm{~V}$	350	500	650	ns
toff	Turn-Off Propagation Delay	$\mathrm{V}_{\mathrm{LIN} 1,2,3}=\mathrm{V}_{\mathrm{HIN} 1,2,3}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1,2,3}=0 \mathrm{~V}$	350	500	650	ns
t_{R}	Turn-On Rise Time	$\mathrm{V}_{\text {LIN } 1,2,3}=\mathrm{V}_{\text {HIN } 1,2,3}=0 \mathrm{~V}$	20	50	100	ns
t_{F}	Turn-Off Fall Time	$\mathrm{V}_{\mathrm{LIN} 1,2,3}=\mathrm{V}_{\text {HIN } 1,2,3}=5 \mathrm{~V}$	10	30	80	ns
t_{EN}	Enable LOW to Output Shutdown Delay		400	500	600	ns
tcsblt	CS Pin Leading-Edge Blanking Time		400	650	850	ns
$\mathrm{t}_{\text {csfo }}$	Time from CS Triggering to FO	From $\mathrm{V}_{\text {csc }}=1 \mathrm{~V}$ to $\overline{\mathrm{FO}}$ Turn-Off		850	1300	ns
tcsoff	Time from CS Triggering to Low-Side Gate Outputs Turn-Off	From $\mathrm{V}_{\mathrm{csc}}=1 \mathrm{~V}$ to Starting Gate Turn-Off		850	1300	ns
trltin	Input Filtering Time ${ }^{(6)}$ ($\left.\overline{\mathrm{HINx}}, \overline{\mathrm{LINx}}, \mathrm{EN}\right)$		170	250	330	ns
$\mathrm{t}_{\text {FLTCLR }}$	Fault-Clear Time	$\mathrm{C}_{\text {RCIN }}=2 \mathrm{nF}$		1.30	2.35	ms
DT	Dead Time		230	320	400	ns
MDT	Dead-Time Matching (All Six Channels)				50	ns
MT	Delay Matching (All Six Channels)				50	ns
PM	Output Pulse-Width Matching ${ }^{(7)}$	$\mathrm{PW}_{\text {IN }}>1 \mu \mathrm{~s}$		50	100	ns

Notes:

6. The minimum width of the input pulse should exceed 500 ns to ensure the filtering time of the input filter is exceeded.
7. PM is defined as $\mathrm{PW}_{\mathbb{N}}-$ PW Out.

Typical Characteristics

Figure 4. Turn-On Propagation Delay
vs. Temperature

Figure 6. Turn-On Rise Time vs. Temperature

Figure 8. Enable LOW to Output Shutdown Delay vs. Temperature

Figure 5. Turn-Off Propagation Delay
vs. Temperature

Figure 7. Turn-Off Fall Time vs. Temperature

Figure 9. Fault-Clear Time vs. Temperature

Typical Characteristics (Continued)

Figure 10.Dead Time vs. Temperature

Figure 12.Delay Matching vs. Temperature

Figure 14. Quiescent V_{DD} Supply Current
vs. Temperature

Figure 11.Dead-Time Matching vs. Temperature

Figure 13. Allowable Negative V_{s} Voltage vs. Temperature

Figure 15. Quiescent V_{BS} Supply Current vs. Temperature

Typical Characteristics (Continued)

Figure 16.Operating VDD Supply Current vs. Temperature

Figure 18. VDD UVLO+ vs. Temperature

Figure 20.VBS UVLO+ vs. Temperature

Figure 17.Operating V_{BS} Supply Current vs. Temperature

Figure 19. VDD UVLO- vs. Temperature

Figure 21. $V_{B S}$ UVLO- vs. Temperature

Typical Characteristics (Continued)

Figure 22.High-Level Output Voltage
vs. Temperature

Figure 24.Logic HIGH Input Voltage vs. Temperature

Figure 26.Logic Input HIGH Bias Current
vs. Temperature

Figure 23.Low-Level Output Voltage vs. Temperature

Figure 25.Logic LOW Input Voltage vs. Temperature

Figure 27.Logic Input LOW Bias Current
vs. Temperature

Typical Characteristics (Continued)

Figure 28. Input Pull-Down Resistance vs. Supply Voltage

Figure 30. Quiescent VDD Supply Current vs. Supply Voltage

Figure 32. Operating VDD Supply Current vs. Supply Voltage

Figure 29.Enable Pin Pull-Down Resistance vs. Supply Voltage

Figure 31. Quiescent V_{BS} Supply Current vs. Supply Voltage

Figure 33.Operating V_{BS} Supply Current vs. Supply Voltage

Switching Time Definitions

Figure 34.Switching Time Waveform Definitions

Figure 35. Input / Output Timing Diagram

Figure 36. Detailed View of B and C Intervals During Over-Current Protection

Applications Information

1. Dead Time

Dead time is automatically inserted whenever the dead time of the external two input signals (between HINx and $\overline{\text { LINx }}$ signals) is shorter than internal fixed dead times (DT1 and DT2). Otherwise, external dead times larger than internal dead times are not modified by the gate driver and internal dead-time waveform definition is shown in Figure 37.

Figure 37.Internal Dead-Time Definitions

2. Protection Function

2.1 Fault Out ($\overline{\mathrm{FO}}$) and Under-Voltage Lockout

The high- and low-side drivers include under-voltage lockout (UVLO) protection circuitry that monitors the supply voltage for V_{DD} and $\mathrm{V}_{B S}$ independently. It can be designed to prevent malfunction when V_{DD} and $\mathrm{V}_{B S}$ are lower than the specified threshold voltage. The UVLO hysteresis prevents chattering during power-supply transitions. Moreover, the fault signal (power supply voltage $\overline{\mathrm{FO}}$) goes to LOW state to operate reliably during power-on events when the power supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$ is below the under-voltage lockout high threshold voltage for the circuit (during $t_{1} \sim t_{2}$). The UVLO circuit is not otherwise activated; shown Figure 38. If VDD is lower than 3.5 V , the fault signal cannot be driven to LOW state because VDD is not enough to drive internal circuit.

Figure 38.Waveforms for Under-Voltage Lockout

2.2 Shoot-Through Protection

The shoot-through protection circuitry prevents both high- and low-side switches from conducting at the same time, as shown Figure 39.

Example A

Example B
Figure 39.Shoot-Through Protection
An interlock function is a device used to prevent both high- and low-side switches from conducting at the same time as shown Figure 40. In most applications an interlock is used to help prevent a device from harming its operator or damaging itself by when two input signals of a same leg are activated simultaneously, only one output is activated.

Figure 40. Interlock Function

2.3 Enable Input

When the EN pin is in HIGH state, the gate driver operates normally. When a condition occurs that should shut down the gate driver, the EN pin should be LOW. The enable circuitry has an input filter; the minimum input duration is specified by $\mathrm{t}_{\mathrm{fLT} \text { IN }}$ (typically 250 ns).

Figure 41.Output Enable Timing Waveform

2.4 Fault-Out ($\overline{\mathrm{FO}}$) and Over-Current Protection

FAN73894 provides an integrated fault output (FO) and an adjustable fault-clear timer ($\mathrm{t}_{\text {fltcle }}$). There are two situations that cause the gate driver to report a fault via the $\overline{\mathrm{FO}}$ pin. The first is an under-voltage condition of low-side gate driver supply voltage (V_{DD}) and the second is when the current-sense pin (CS) recognizes a fault. If a fault condition occurs, the FO pin is internally pulled to COM, the fault-clear timer is activated, and all outputs ($\mathrm{HO} 1,2,3$ and LO1, 2, 3) of the gate driver are turned off. The fault output stays LOW until the fault condition has been removed and the fault-clear timer expires. Once the fault-clear timer expires, the voltage on the FO pin returns to pull-up voltage.

The fault-clear time ($\mathrm{t}_{\text {FLTCLR }}$) is determined by an internal current source ($\mathrm{I}_{\mathrm{RCIN}}=5 \mu \mathrm{~A}$) and an external $\mathrm{C}_{\mathrm{RCIN}}$ at the RCIN pin, as shown as:

$$
\begin{equation*}
t_{\text {FLTCLR }}=\frac{C_{R C I N} \times V_{R C I N, T H}}{I_{R C I N}}[s] \tag{1}
\end{equation*}
$$

The $R_{\text {DSRCIN }}$ of the MOSFET is a characteristic discharge curve with respect to the external capacitor $\mathrm{C}_{\text {rcin. }}$. The time constant is defined by the external capacitor $\mathrm{C}_{\text {RCIN }}$ and the $\mathrm{R}_{\mathrm{DSRCII}}$ of the MOSFET.

The output of current-sense comparator (CS_COMP) passes a noise filter, which inhibits an over-current shutdown caused by parasitic voltage spikes of $\mathrm{V}_{\text {cs }}$.
This corresponds to a voltage level at the comparator of $\mathrm{V}_{\text {CSTH }+}-\mathrm{V}_{\text {CSHYS }}=500 \mathrm{mV}-60 \mathrm{mV}=440 \mathrm{mV}$, where $\mathrm{V}_{\mathrm{CSHYS}}=60 \mathrm{mV}$ is the hysteresis of the current comparator (CS_COMP), as shown in Figure 42.

Figure 42.Over-Current Protection
Figure 43 shows the waveform definitions of RCIN, $\overline{\mathrm{FO}}$, and the low-side driver; which uses a soft turn-off method when an under-voltage condition of the low-side gate driver supply voltage (V_{DD}) or the current-sense pin (CS) recognizes a fault. If a fault condition occurs, the FO Pin is internally pulled to COM and all outputs (HO1,2,3 and LO1,2,3) of the gate driver are turned off. Low-side outputs decline linearly by the internal sink current source ($l_{\text {soft }}=40 \mathrm{~mA}$) for soft turn-off, as shown in Figure 43.

Figure 43. R $_{\text {CIN }}$ and Fault-Clear Waveform Definition

3. Noise Filter

3.1 Input Noise Filter

Figure 44 shows the input noise filter method, which has symmetry duration between the input signal (tinput) and the output signal (toutput) and helps to reject noise spikes and short pulses. This input filter is applied to the HINx, LINx, and EN inputs. The upper pair of waveforms (Example A) shows input signal duration (tinput) much longer than input filter time ($\mathrm{t}_{\text {fLTin }}$); it is approximately the same duration between the input signal time (tinput) and the output signal time (toutput). The lower pair of waveforms (Example B) shows an input signal time ($\mathrm{t}_{\text {input }}$) slightly longer than input filter time ($\mathrm{t}_{\text {fltin }}$); it is approximately the same duration between input signal time ($\mathrm{t}_{\text {INPut }}$) and the output signal time (toutput).

Figure 44.Input Noise Filter Definition
3.2. Short-Pulsed Input Noise Rejection Method

The input filter circuitry provides protection against short-pulsed input signals (HINx , LINx, and EN) on the input signal lines by applied noise signal.
If the input signal duration is less than input filter time ($\mathrm{t}_{\text {FLTIN }}$), the output does not change states.
Example A and B of the Figure 45 show the input and output waveforms with short-pulsed noise spikes with a duration less than input filter time; the output does not change states.

Figure 45. Noise Rejecting Input Filter Definition

Figure 46 shows the characteristics of the input filters while receiving narrow ON and OFF pulses. If input signal pulse duration, $\mathrm{PW}_{\mathrm{IN}}$, is less than input filter time, $\mathrm{t}_{\text {FLTIN; }}$; the output pulse, PW OUt, is zero. The input signal is rejected by input filter. Once the input signal pulse duration, $\mathrm{PW}_{\mathbb{I N}}$, exceeds input filter time, $\mathrm{t}_{\mathrm{FLTIN}}$, the output pulse durations, PWout, matches the input pulse durations, $P W_{I N}$. FAN73894 input filter time, $\mathrm{t}_{\text {FLTIN, }}$, is about 250 ns for the high- and low-side outputs.

Figure 46. Input Filter Characteristic of Narrow ON

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:
FAN73894MX

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

