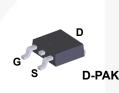
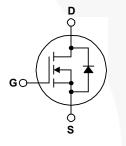


December 2013

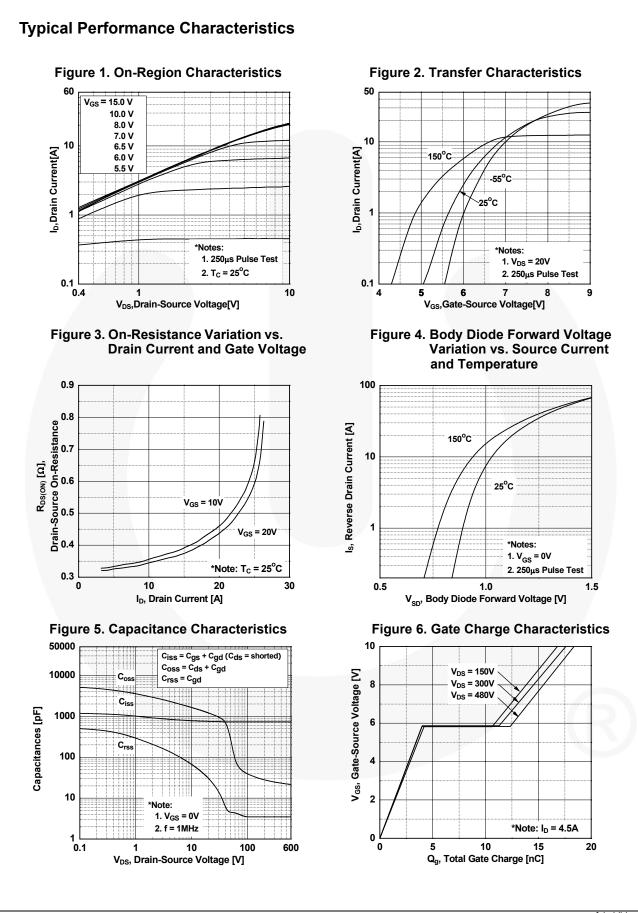

FCD9N60NTM N-Channel SupreMOS[®] MOSFET 600 V, 9 A, 385 mΩ


Features

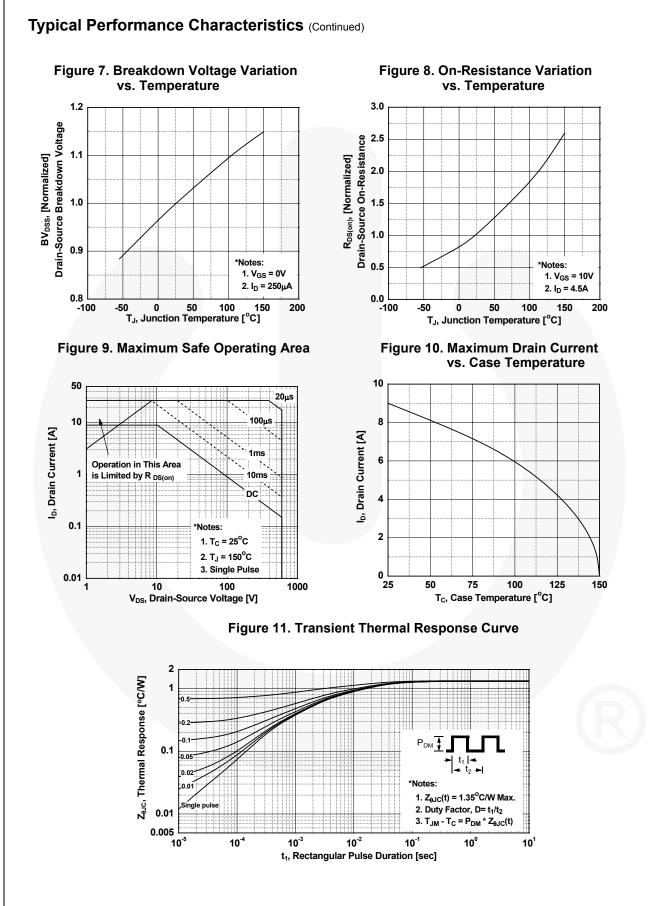
- + $R_{DS(on)}$ = 330 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 4.5 A
- Ultra Low Gate Charge (Typ. Q_g = 17.8 nC)
- Low Effective Output Capacitance
- 100% Avalanche Tested
- RoHS Compliant

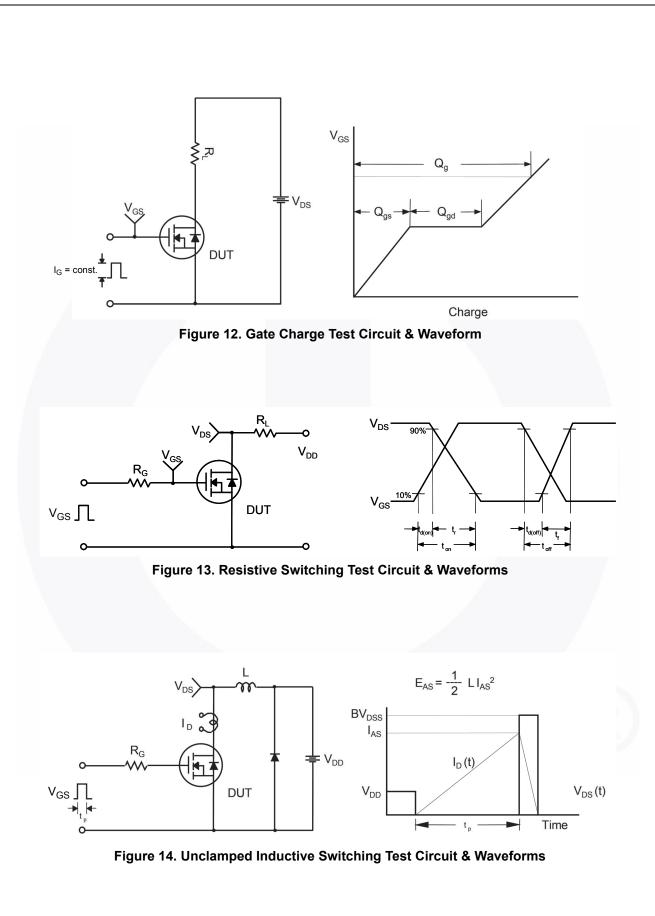
Description

The SupreMOS[®] MOSFET is Fairchild Semiconductor's next generation of high voltage super-junction (SJ) technology employing a deep trench filling process that differentiates it from the conventional SJ MOSFETs. This advanced technology and precise process control provides lowest Rsp on-resistance, superior switching performance and ruggedness. SupreMOS MOSFET is suitable for high frequency switching power converter applications such as PFC, server/telecom power, FPD TV power, ATX power, and industrial power applications.

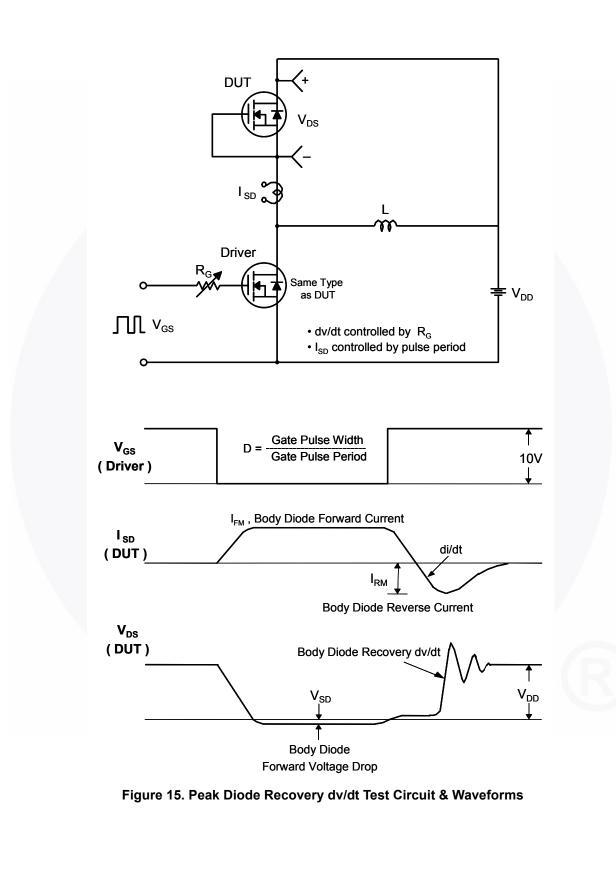

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

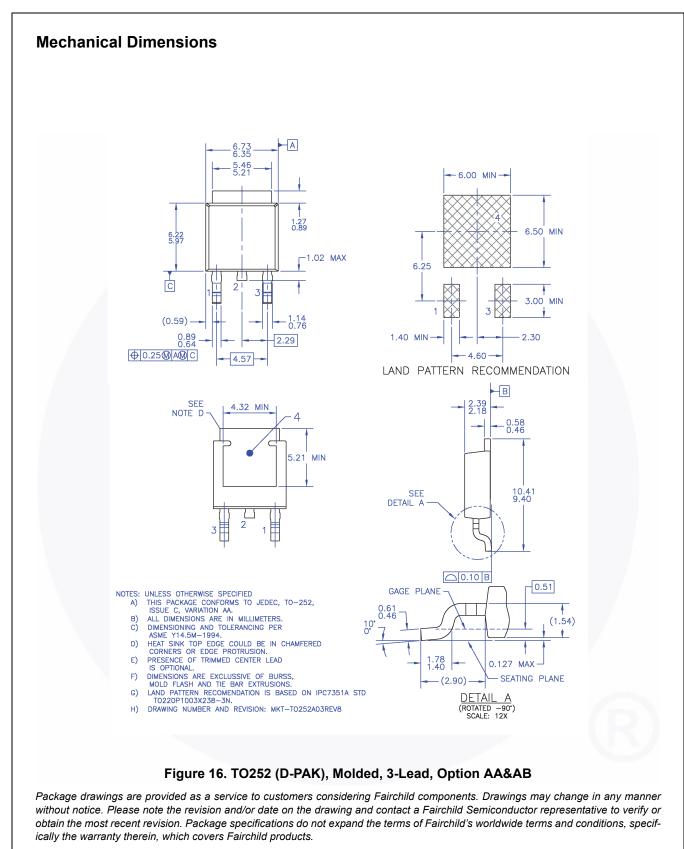
Symbol	Parameter			FCD9N60NTM	Unit	
V _{DSS}	Drain to Source Voltage			600	V	
V _{GSS}	Gate to Source Volta	ige		±30	V	
ID	Drain Current	- Continuous (T _C	= 25°C)	9.0		
	Drain Current	- Continuous (T _C	inuous ($T_{\rm C} = 100^{\circ}{\rm C}$) 5.7		A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	27	A	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			135	mJ	
I _{AR}	Avalanche Current		(Note 1)	9.0	A	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	9.3	mJ	
du/dt	MOSFET dv/dt Ruggedness Peak Diode Recovery dv/dt (N			100	V/ns	
dv/dt			(Note 3)	15		
P _D	Dower Dissinction	(T _C = 25 ^o C)		92.6	W	
	Power Dissipation	- Derate above 2	5°C	0.74	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		300	°C		


Thermal Characteristics


Symbol	Parameter	FCD9N60NTM	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.35	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	62.5	- C/VV

i uit ituii	nber	Top Mark	Package	Packing Method	Reel Size	Тар	e Width	Qua	ntity
FCD9N60	NTM	FCD9N60NTM	D-PAK	Tape and Reel	330 mm	1	6 mm	2500 units	
Electrica	I Chara	acteristics T _C = 2	5°C unless ot	herwise noted.					
Symbol		Parameter		Test Conditio	ons	Min.	Тур.	Max.	Unit
Off Charac	teristics	5							
3V _{DSS}	Drain to	Source Breakdown Volt	age I	$I_D = 1mA, V_{GS} = 0V, T_J = 25^{\circ}C$		600	-	-	V
∆BV _{DSS} ∆T _J	Breakdown Voltage Temperature Coefficient		e I	$I_D = 1$ mA, Referenced to 25°C		-	0.8	-	V/°C
DSS	Zero Ga	te Voltage Drain Curren	T	$V_{\rm DS}$ = 480V, $V_{\rm GS}$ = 0V		-	-	10	μA
033				V_{DS} = 480V, V_{GS} = 0V, T_{C} = 125°C		-	-	100	•
GSS	Gate to	Body Leakage Current	\	$V_{\rm GS}$ = ±30V, $V_{\rm DS}$ = 0V		-	-	±100	nA
On Charac	teristics	5							
V _{GS(th)}	Gate Th	reshold Voltage	١	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$		3.0	-	5.0	V
RDS(on)		rain to Source On Resis		$V_{GS} = 10V, I_D = 4.5A$		-	0.330	0.385	Ω S
JFS	Forward	Transconductance		V _{DS} = 40V, I _D = 4.5A		-	5.3		
Dynamic C	haracte	ristics	h				1		1
C _{iss}	Input Ca	pacitance		V _{DS} = 100V, V _{GS} = 0V f = 1MHz		-	735	1000	pF
C _{oss}		Capacitance				-	40	53	pF
C _{rss}	-	Transfer Capacitance	1			-	3.5	5.5	pF
C _{oss}	Output 0	out Capacitance		V _{DS} = 380V, V _{GS} = 0V, f = 1MHz		-	23.7	-	pF
Coss(eff.)	Effective	Output Capacitance		$V_{DS} = 0V$ to 380V, V_{GS}		-	122	-	pF
Switching	Charact	eristics	h					1	
d(on)	1	Delay Time		V _{DD} = 380V, I _D = 4.5A R _{GEN} = 4.7Ω (Note 4)			13.2	-	ns
r		Rise Time	· · · · ·			-	9.6	-	ns
d(off)	Turn-Off	Delay Time	F			-	28.7	-	ns
f		Fall Time				•	11.5	-	ns
Q _{g(tot)}	Total Ga	te Charge at 10V				-	17.8	-	nC
Q_{gs}	Gate to a	Source Gate Charge		V _{DS} = 380V, I _D = 4.5A	-	-	4.2	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge	\	V _{GS} = 10V	(Note 4)		7.6	-	nC
ESR		ent Series Resistance(G	-S)	f = 1MHz	(NOLE 4)		2.65	_	Ω
							2.00		
		le Characteristics	auree Diede I				0.0		•
S		n Continuous Drain to S n Pulsed Drain to Sourc				-	9.0 27	-	A
SM						-		-	A
				$V_{GS} = 0V, I_{SD} = 9A$ $V_{GS} = 0V, I_{SD} = 9A$ $dI_{e}/dt = 100A/us$					-
<u>տ</u> Չո		•							ns μC
/ _{SD}	Drain to Source Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge		١			-	- 322 5.04	1.2 - -	r


©2010 Fairchild Semiconductor Corporation FCD9N60NTM Rev. C0



FCD9N60NTM — N-Channel SupreMOS[®] MOSFET

FCD9N60NTM — N-Channel SupreMOS[®] MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003

FCD9N60NTM — N-Channel SupreMOS[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

	all such liauchiaiks.		
AccuPower™	F-PFS™		Sync-Lock™
AX-CAP [®] *	FRFET®	O ®	SYSTEM ®*
BitSiC™	Global Power Resource SM	PowerTrench [®]	GENERAL
Build it Now™	GreenBridge™	PowerXS™	TinyBoost®
CorePLUS™	Green FPS™	Programmable Active Droop™	TinyBuck [®]
CorePOWER™	Green FPS™ e-Series™	QFET®	TinyCalc™
CROSSVOLT™	Gmax™	QS™	TinyLogic®
CTL™	GTO™	Quiet Series™	TINYOPTO™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™	TinyPower™
DEUXPEED [®] Dual Cool™	ISOPLANAR™ Marking Small Speakers Sound Lo		TinyPWM™
EcoSPARK [®]	and Better™	Saving our world, 1mW/W/kW at a time™	TinyWire™
Ecospann EfficentMax™	MegaBuck™	Saving our world, Thiw/W/KW at a time ™ SignalWise™	TranSiC™
ESBC™	MICROCOUPLER™	SmartMax™	TriFault Detect™
	MicroFET ^M	SMART START™	TRUECURRENT®*
	MicroPak™	Solutions for Your Success™	µSerDes™
Fairchild [®]	MicroPak2™	SPM®	\mathcal{M}
Fairchild Semiconductor [®]	MillerDrive™	STEAL THIM	Ser Des"
FACT Quiet Series™	MotionMax™	SuperFET®	UHC®
FACT	mWSaver [®]	SuperSOT™-3	Ultra FRFET™
FAST®	OptoHiT™	SuperSOT™-6	UniFET™
FastvCore™	OPTOLOGIC [®]	SuperSOT™-8	VCX™ VisualMax™
FETBench™	OPTOPLANAR®	SupreMOS®	VoltagePlus™
FPS™		SyncFET™	XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: