

FCH104N60F_F085

N-Channel SuperFET II FRFET MOSFET

600 V, 37 A, 104 mΩ

Features

- Typical $R_{DS(on)}$ = 91 m Ω at V_{GS} = 10 V, I_D = 18.5 A
- Typical Q_{a(tot)} = 109 nC at V_{GS} = 10V, I_D = 18.5 A
- UIS Capability
- Qualified to AEC Q101
- RoHS Compliant

Description

SuperFET® II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently SuperFETII is very well suited for the Soft switching and Hard Switching topologies like High Voltage Full Bridge and Half Bridge DC-DC, Interleaved Boost PFC, Boost PFC for HEV-EV automotive.

SuperFET II FRFET® MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

For current package drawing, please refer to the Fairchild website at https://www.fairchildsemi.com/package-drawings/TO/ TO247A03.pdf

Application

- Automotive On Board Charger
- Automotive DC/DC converter for HEV

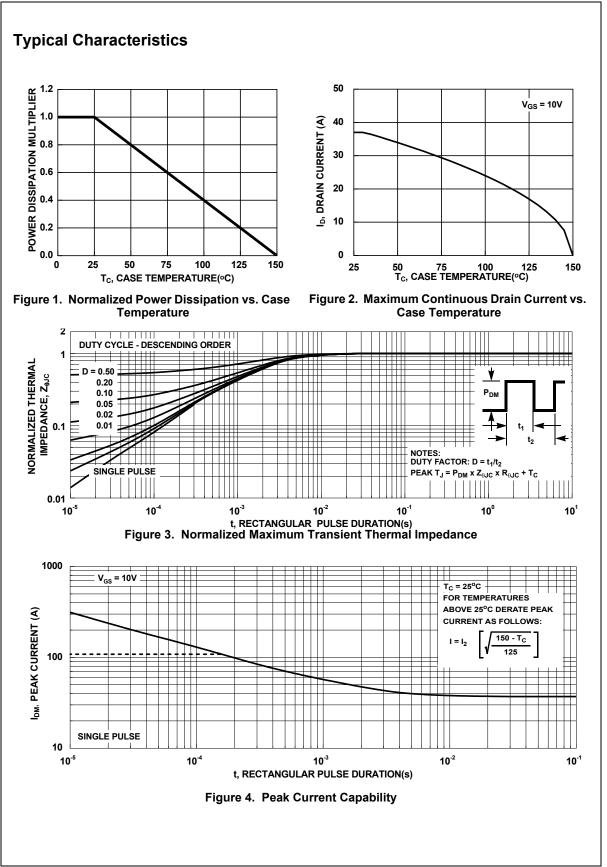
November 2014

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain to Source Voltage		600	V
V _{GS}	Gate to Source Voltage		±20	V
		T _C = 25°C	37	А
I _D	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C = 100°C	24	А
	Pulsed Drain Current		See Fig 4	А
E _{AS}	Single Pulse Avalanche Rating	(Note 2)	809	mJ
dv/dt	MOSFET dv/dt		100	V//mm
uv/ul	Peak Diode Recovery dv/dt	(Note 3)	50	V/ns
	Power Dissipation		357	W
P _D	Derate Above 25°C	2.85	W/ ^o C	
T _J , T _{STG}	Operating and Storage Temperature	-55 to + 150	°C	
$R_{\theta JC}$	Maximum Thermal Resistance Junction to Case	0.35	°C/W	
$R_{\theta JA}$	Maximum Thermal Resistance Junction to Ambie	ent (Note 4)	40	°C/W

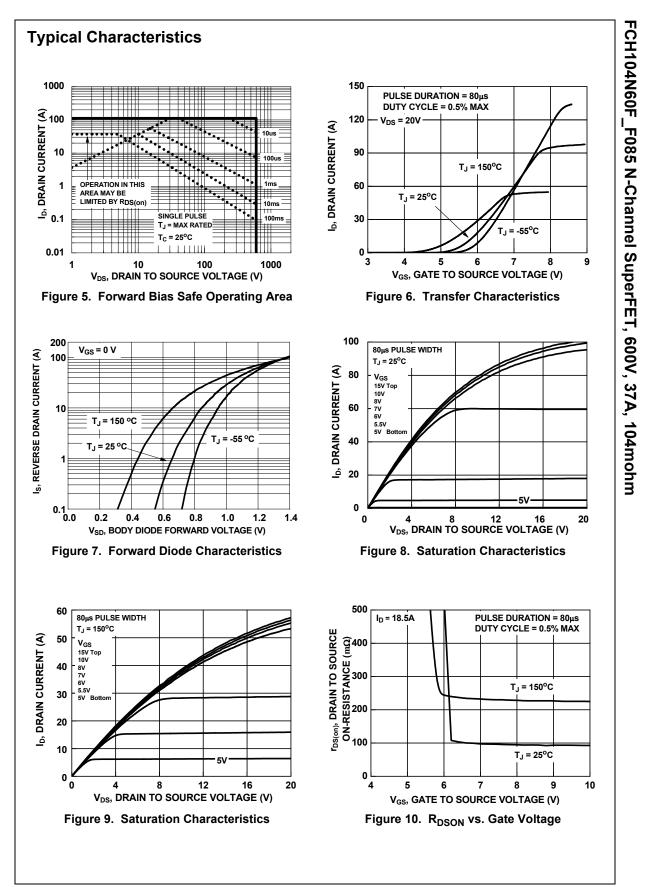
Maximum Ratings T_C = 25°C unless otherwise noted

Package Marking and Ordering Information

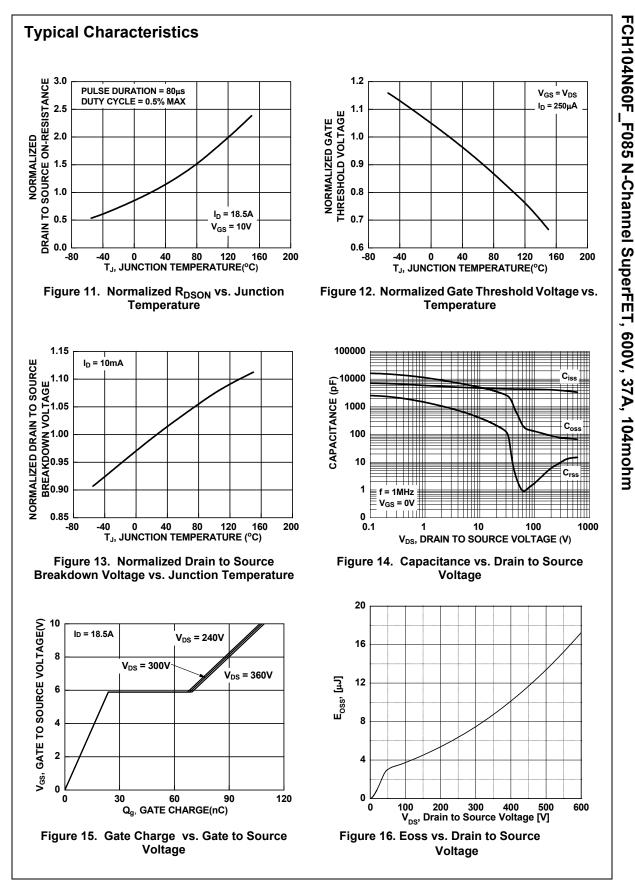
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCH104N60F	FCH104N60F_F085	TO-247	-	-	30

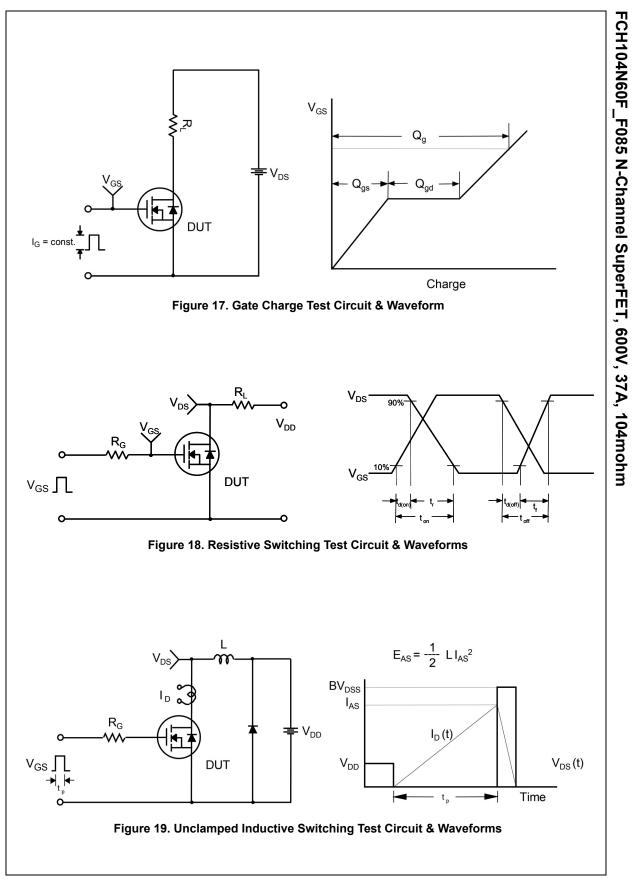

Notes:

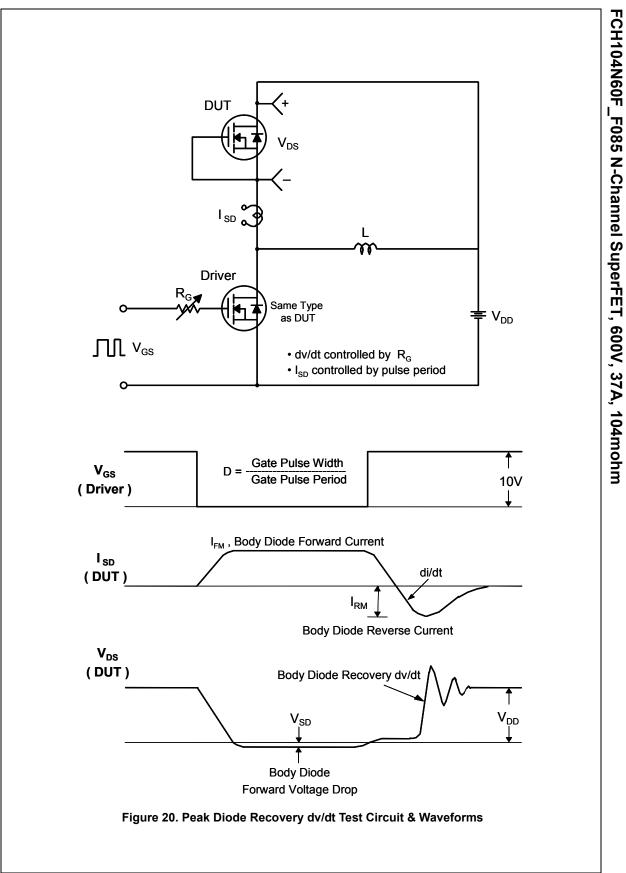
1: Current is limited by bondwire configuration.

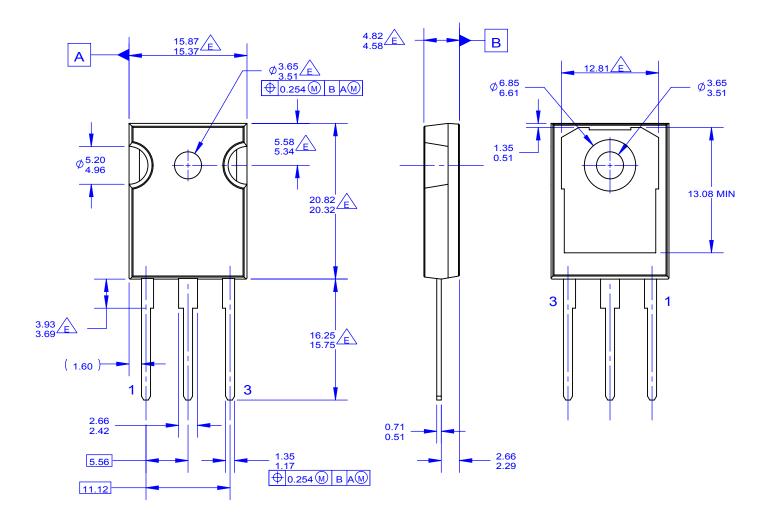

2: Starting T_J = 25°C, L = 35mH, I_{AS} = 6.8A, V_{DD} = 100V during inductor charging and V_{DD} = 0V during time in avalanche. 3: I_{SD} ≤ 18.5A, di/dt ≤ 200 A/us, V_{DD} ≤ 380V, starting T_J = 25°C.

4: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design, while R_{0JA}is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

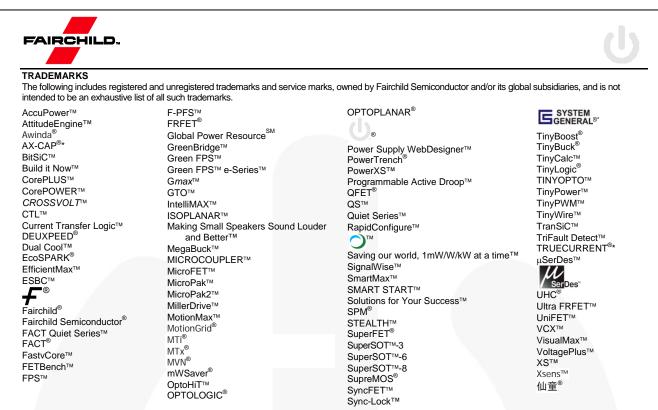

$\begin{array}{c cr} \hline l_{GSS} & \hline Gate to Source Leakage Current & V_{GS} = \pm 20V & - & - & \pm 100 \\ \hline V_{GS} = \pm 20V & - & - & \pm 100 \\ \hline V_{GS} = \pm 20V & - & - & \pm 100 \\ \hline On Characteristics & & & & & & \\ \hline V_{GS}(m) & \hline Drain to Source On Resistance & V_{GS} = V_{DS}, I_D = 250 \mu A & 3.0 & 4.0 & 5.0 \\ \hline I_D = 18.5A, & V_{GS} = 10V & T_J = 25^\circ C & - & 91 & 104 \\ \hline V_{JS} = 100V, V_{GS} = 10V & T_J = 150^\circ C(Note 5) & - & 217 & 275 \\ \hline Dynamic Characteristics & & & & \\ \hline C_{iss} & Input Capacitance & V_{DS} = 100V, V_{GS} = 0V, & - & 134 & - & - \\ \hline C_{coss} & Output Capacitance & f = 1MHz & - & 0.49 & - & - \\ \hline C_{coss} & Output Capacitance & f = 1MHz & - & 0.49 & - & - \\ \hline C_{rss} & Reverse Transfer Capacitance & f = 1MHz & - & 0.49 & - & - \\ \hline C_{gl}(ToT) & Total Gate Charge & V_{DD} = 380V & I_D = 18.5A & - & 8 & 11 & - & - \\ \hline Q_{gd} & Gate to Drain "Miller" Charge & V_{CS} = 10V & - & - & 46 & - & - \\ \hline Switching Characteristics & & & & \\ \hline t_{off} & Turn-On Time & V_{CS} = 10V, R_G = 4.7\Omega & - & - & 58 & 78 & - & - \\ \hline t_{off} & Turn-Off Time & & V_{CS} = 10V, R_G = 4.7\Omega & - & - & - & - & - & - \\ \hline T_{rr} & Reverse Recovery Time & I_F = 18.5A, V_{GS} = 0V & - & - & 1.2 & - & - & - & - \\ \hline T_{rr} & Reverse Recovery Time & I_F = 18.5A, V_{GS} = 0V & - & - & - & - & - & - & - & - & - & $	Symbol	Parameter	Test	Conditions	Min	Тур	Max	Units
$\begin{array}{ c c c c c c c c c } \hline \mbox{Drain to Source Leakage Current} & V_{DS}=600V, & T_J=25^{\circ}C & - & - & 10 \\ \hline \mbox{V}_{GS}=0V & T_J=150^{\circ}C(Note 5) & - & - & 1 \\ \hline \mbox{J}_{GSS} & Gate to Source Leakage Current} & V_{GS}=\pm 20V & - & - & \pm 100 \\ \hline \mbox{Dn Characteristics} & & & & & & & & & & & & & & & & & & &$	Off Cha	racteristics						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bunss	Drain to Source Breakdown Voltage	I _D = 250μA, V	7 _{GS} = 0V	600	-	-	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-			-	-	10	μA
$\begin{array}{c c_{GSS} & Gate to Source Leakage Current & V_{GS} = \pm 20V & - & - & \pm 100 \\ \hline \\ \hline On Characteristics \\ \hline \\ \hline \\ \hline On Characteristics \\ \hline \\ $	I _{DSS}	Drain to Source Leakage Current			-	-	1	mA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{GSS}	Gate to Source Leakage Current		0 ()	-	-	±100	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	On Cha	racteristics						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vcc(th)	Gate to Source Threshold Voltage	Vcc = Vpc Ir	a = 250µA	3.0	40	50	V
$\begin{array}{c c c c c c c } \hline \mbox{Data to Solute On Resistance} & V_{GS} = 10V & T_J = 150^{\circ}C(Note 5) & - & 217 & 275 \\ \hline \mbox{Dynamic Characteristics} \\ \hline \mbox{C}_{GS} & \mbox{Output Capacitance} & V_{DS} = 100V, V_{GS} = 0V, \\ \hline \mbox{f} = 1MHz & - & 134 & - & - & - & 134 & - & - & - & - & - & - & - & - & - & $	• GS(III)		$l_{\rm c} = 18.5$	$T_1 = 25^{\circ}C$	-			mΩ
$\begin{tabular}{ c c c c c c c } \hline Dynamic Characteristics \\ \hline Dynamic Characteristics \\ \hline C_{iss} & Input Capacitance & F = 10V, V_{GS} = 0V, & - & 4302 & - & - & 134 & - & - & - & 134 & - & - & - & 134 & - & - & - & 134 & - & - & - & 134 & - & - & - & 134 & - & - & - & 134 & - & - & - & 134 & - & - & - & 134 & - & - & - & - & 134 & - & - & - & - & 134 & - & - & - & - & 134 & - & - & - & - & - & 134 & - & - & - & - & - & 134 & - & - & - & - & - & 134 & - & - & - & - & - & - & 134 & - & - & - & - & - & - & 134 & - & - & - & - & - & - & - & - & - & $	r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V$		-			mΩ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynami	ic Characteristics		•••••		1	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cise	Input Capacitance			_	4302	-	pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Coss			V _{GS} = 0V,	-	134	-	, pF
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			=t = 1MHz	-	-	1.7	-	, pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			f = 1MHz		-	0.49	-	Ω
$ \begin{array}{ c c c c c c c c } \hline Source Gate Charge \\ Q_{g(th)} & Threshold Gate Charge \\ Q_{gs} & Gate to Source Gate Charge \\ Q_{gd} & Gate to Drain "Miller" Charge \\ \hline \\ $		Total Gate Charge	V _{DD} = 380V I _D = 18.5A		-	109	139	nC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-			-	8	11	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-	23	-	nC
3° - 12 Switching Characteristics t_{on} Turn-On Time - 58 78 $t_{d(on)}$ Turn-On Delay Time - 35 - - t_r Rise Time V_{DD} = 380V, I_D = 18.5A, - 23 - $t_{d(off)}$ Turn-Off Delay Time V_GS = 10V, R_G = 4.7\Omega - 94 - t_f Fall Time - 98 131 - Drain-Source Diode Characteristics V_SD Source to Drain Diode Voltage I_{SD} = 18.5A, V_{GS} = 0V - - 1.2 T_{rr} Reverse Recovery Time I _F = 18.5A, dI_{SD}/dt = 100A/µs - 162 - Q_{rr} Reverse Recovery Charge V_{DD} = 480V - 1223 -					-	46	-	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Switch	ning Characteristics						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{on}	Turn-On Time		-	58	78	ns	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{d(on)}	Turn-On Delay Time			-	35	-	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t _r	Rise Time			-	23	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(off)}	Turn-Off Delay Time			-	94	-	ns
VsdSource to Drain Diode VoltageIsdIsdIsd V_{SD} Source to Drain Diode VoltageIsd18.5A, VGS = 0V1.2 T_{rr} Reverse Recovery TimeIF = 18.5A, dISd/dt = 100A/ μ s-162- Q_{rr} Reverse Recovery Charge V_{DD} = 480V-1223-	t _f	Fall Time		-	-	5	-	ns
V_{SD} Source to Drain Diode Voltage $I_{SD} = 18.5A$, $V_{GS} = 0V$ 1.2 T_{rr} Reverse Recovery Time $I_F = 18.5A$, $dI_{SD}/dt = 100A/\mu s$ -162- Q_{rr} Reverse Recovery Charge $V_{DD} = 480V$ -1223-	t _{off}	Turn-Off Time			-	98	131	ns
T_{rr} Reverse Recovery TimeIF= 18.5A, dI_{SD}/dt = 100A/µs-162- Q_{rr} Reverse Recovery Charge V_{DD} = 480V-1223-	Drain-S	ource Diode Characteristics						
T_{rr} Reverse Recovery TimeIF= 18.5A, dI_{SD}/dt = 100A/ μ s-162- Q_{rr} Reverse Recovery Charge V_{DD} = 480V-1223-	V _{SD}	Source to Drain Diode Voltage	I _{SD} = 18.5A, V _{GS} = 0V		-	-	1.2	V
Q_{rr} Reverse Recovery Charge $V_{DD} = 480V$ - 1223 -		Reverse Recovery Time	$I_F = 18.5A, dI_{SD}/dt = 100A/\mu s$		-	162	-	ns
		Reverse Recovery Charge	V _{DD} = 480V		-	1223	-	nC
NOIES:	Notes:							
5: The maximum value is specified by design at T _J = 150°C. Product is not tested to this condition in production.	5: The max	kimum value is specified by design at T_J = 150)°C. Product is no	t tested to this condition	in produc	tion.		


FCH104N60F_F085 N-Channel SuperFET, 600V, 37A, 104mohm


FCH104N60F_F085 Rev. B2



FCH104N60F_F085 Rev. B2



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
- FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

DOES NOT COMPLY JEDEC STANDARD VALUE F. DRAWING FILENAME: MKT-TO247A03_REV03

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FCH104N60F_F085