November 2013

ormal Characteristics

Symbol	Parameter	FCPF11N60F	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	3.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W

1

mermai	Characteristics

V _{DSS}	Drain to Source Voltage			600	V
ID	Drain Current	- Continuous ($T_C = 25^{\circ}C$) - Continuous ($T_C = 100^{\circ}C$)		11*	^
	Drain Current			7*	— A
I _{DM}	Drain Current	- Pulsed (Note 1)		33*	А
V _{GSS}	Gate to Source Voltage			±30	V
E _{AS}	Single Pulsed Avalanche Energy		Note 2)	340	mJ
I _{AR}	Avalanche Current		Note 1)	11	А
E _{AR}	Repetitive Avalanche Energy		Note 1)	12.5	mJ
dv/dt	Peak Diode Recovery dv/dt		Note 3)	4.5	V/ns
D	Dawar Diagination	$(T_{\rm C} = 25^{\rm o}{\rm C})$		36	W
PD	Power Dissipation	- Derate Above 25°C		0.29	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C
* Drain current lir	nited by maximum junction termperature.				I

Applications

· RoHS compliant

Features

• 600 V @ T_J = 150°C

Typ. R_{DS(on)} = 320 mΩ

• 100% Avalanche Tested

LCD/LED/PDP TV

Lighting

Symbol

 Solar Inverter · AC-DC Power Supply

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Description

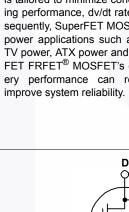
SuperFET[®] MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. Super-FET FRFET® MOSFET's optimized body diode reverse recovery performance can remove additional component and

FCPF11N60F

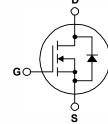
FAIRCHILD SEMICONDUCTOR®

600 V, 11 A, 380 mΩ

• Fast Recovery Type (t_{rr} = 120 ns)

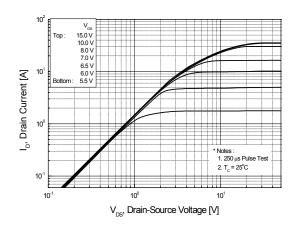

• Ultra Low Gate Charge (Typ. Q_g = 40 nC)

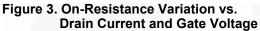
Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 95 pF)


N-Channel SuperFET[®] FRFET[®] MOSFET

Unit

Parameter




Device Mid	rking	Device	Packa	ge	Reel Size	Тар	e Width		Quantit	у
FCPF11N	160F	FCPF11N60F	TO-220	0F	-		-		50	
Electrica	l Char	acteristics T _c =	= 25°C unless	otherwi	se noted					
Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Unit
Off Charac	teristic	s								
		•		Vec =	0 V, I _D = 250 μA, T _C	= 25°C	600		_	V
BV _{DSS}	Drain to	Source Breakdown V	/oltage		0 V, I _D = 250 μA, T _C		-	650	_	V
ΔΒV _{DSS} / ΔΤ _J	Breakdo	own Voltage Temperat	ture		50 μA, Referenced to		-	0.6	-	V/°C
BV _{DS}		ource Avalanche Brea	akdown	V _{GS} =	0 V, I _D = 11 A		-	700	-	V
				Vpe =	600 V, V _{GS} = 0 V		-	-	1	
IDSS	Zero Ga	ate Voltage Drain Curr	ent		$480 \text{ V}, \text{ T}_{\text{C}} = 125^{\circ}\text{C}$		-	-	10	μA
I _{GSS}	Gate to	Body Leakage Currer	nt	-	±30 V, V _{DS} = 0 V		-	-	±100	nA
On Charac				•63						
V _{GS(th)}	-1	reshold Voltage		V _{cc} =	V _{DS} , I _D = 250 μA		3.0	_	5.0	V
R _{DS(on)}		rain to Source On Re	sistance		10 V, I _D = 5.5 A		-	0.32	0.38	Ω
9FS		d Transconductance		$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$		-	6	-	S	
Dynamic C				00						-
C _{iss}		apacitance					-	1148	1490	pF
C _{oss}		Capacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		-	671	870	pF	
O _{oss} C _{rss}	-	e Transfer Capacitanc	۵			_	63	82	pF	
C _{oss}		Capacitance	•	V _{DS} = 480 V, V _{GS} = 0 V, f = 1.0 MHz		-	35		pF	
C _{oss(eff.)}		Effective Output Capacitance $V_{DS} = 0 V$ to 400 V, $V_{GS} = 0 V$			-	95	-	pF		
Q _{g(tot)}		ate Charge at 10V				•••	-	40	52	nC
Q_{gs}		Source Gate Charge		V _{DS} = 480 V, I _D = 11 A, V _{GS} = 10 V		-	7.2	-	nC	
∽gs Q _{gd}		Drain "Miller" Charge		▼GS -		(Note 4)	-	21	-	nC
Switching										110
_		Delay Time					- 1	34	80	ns
t _{d(on)} t		Rise Time		V_{DD} = 300 V, I_D = 11 A, R_G = 25 Ω			98	205	ns	
t _r		f Delay Time					119	250	ns	
ld(off) te		Fall Time				_	56	120	ns	
t _f						(Note 4)		50	120	113
		de Characteristic		I.а. Г .а.т. на	and Ourmant				44	٨
l _S	Maximum Continuous Drain to Source Di Maximum Pulsed Drain to Source Diode						-	-	11	A
I _{SM}		Source Diode Forwar				-	-	33 1.4	A	
		Recovery Time	u voltage	$V_{GS} = 0 V, I_{SD} = 11 A$ $V_{GS} = 0 V, I_{SD} = 11 A,$ $dI_{L}/dt = 100 A/\mu s$		-	- 120	-		
V _{SD}	Reverse					-	0.8	-	ns µC	
v _{SD} frr Q _{rr}	Dovorso	Recovery Charge								

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

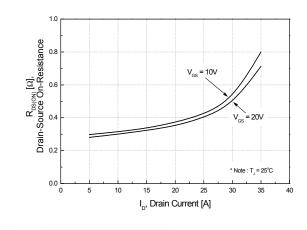
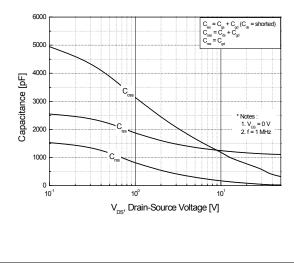
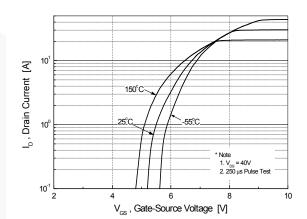
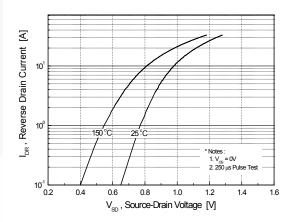
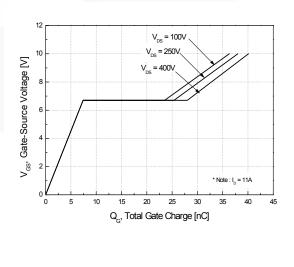
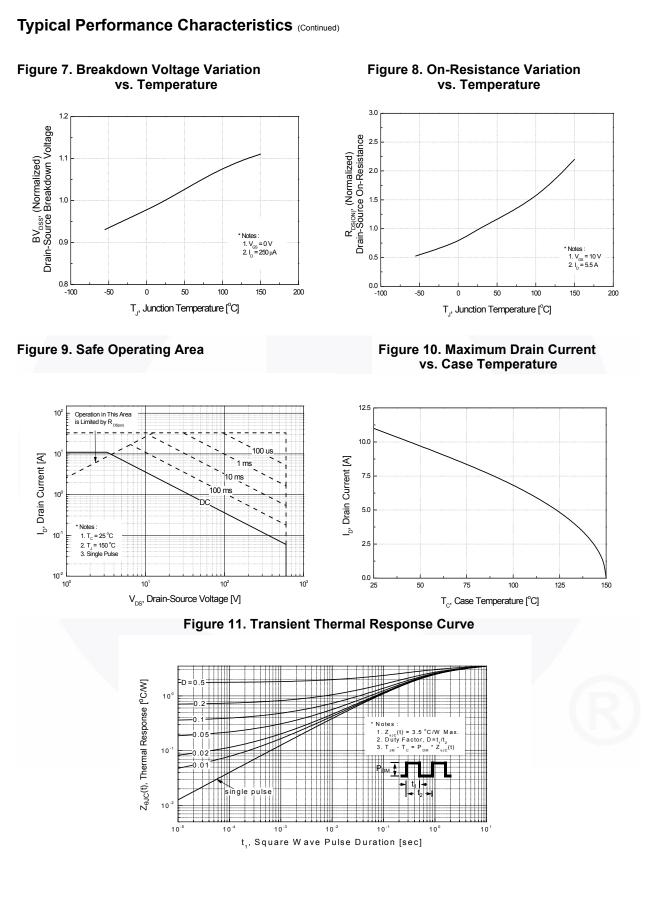
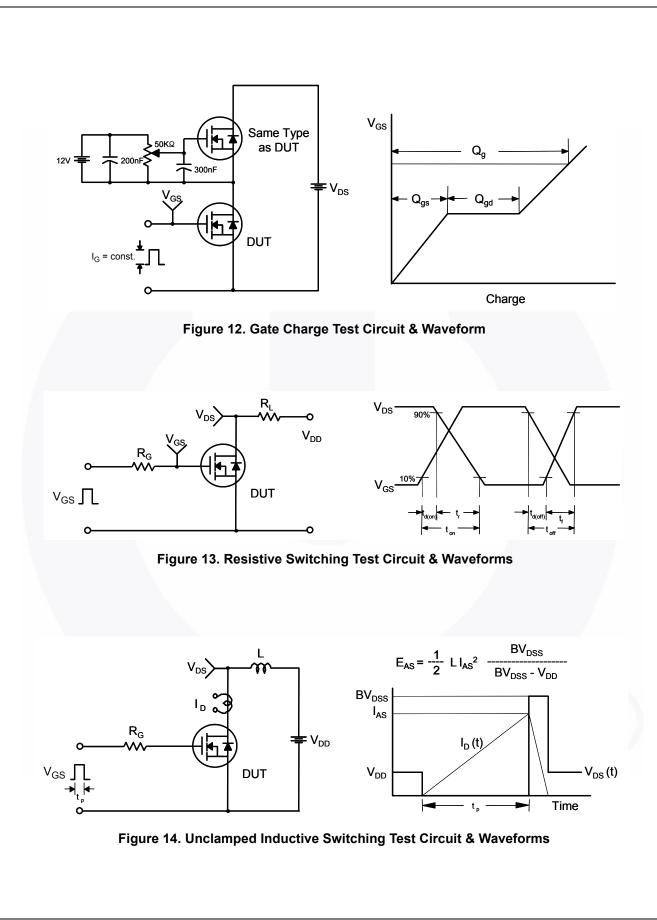





Figure 5. Capacitance Characteristics







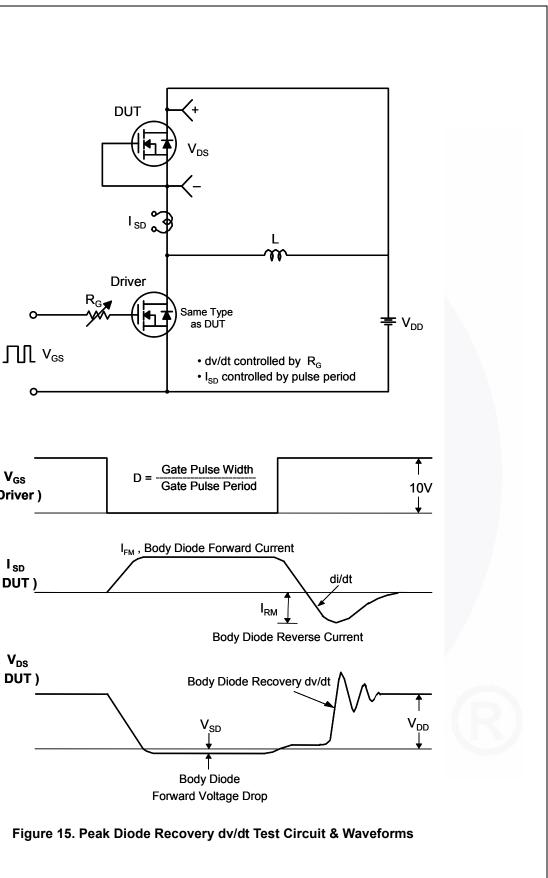
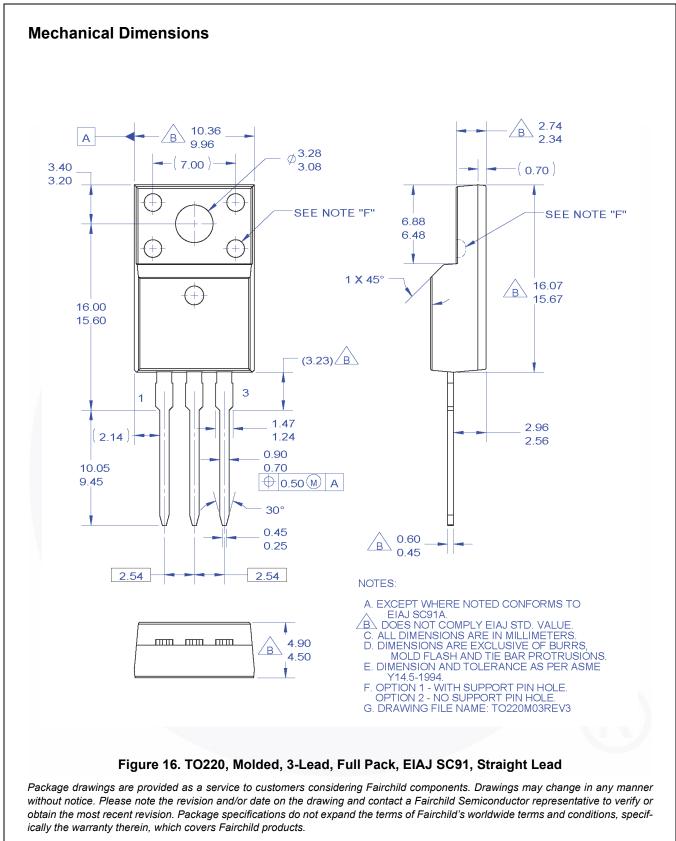


Figure 6. Gate Charge Characteristics


V_{GS}

(Driver)

I _{SD}

(DUT)

V_{DS} (DUT)

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003

FCPF11N60F — N-Channel SuperFET[®] FRFET[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AX-CAP [®] * BitSiC TM Build it Now TM CorePCWER TM CorePOWER TM CROSSVOL7 TM CTL TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastvCore TM FETEnch TM EDST ^M	F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ Gmax™ GTOT™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Lou and Better™ MegaBuck™ MicroPak™ MicroPak™ MicroPak2™	Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM [®] STEALTH™ SuperFET [®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuprMOS [®]	Sync-Lock™ EGENERAL TinyBoost® TinyBuck® TinyCalc™ TinyCojc® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ UHC® Ultra FRFET™ VCX™ VisualMax™ VoltagePlus™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

FCPF11N60F Rev. C1

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: