SEMICロNロபロTロR®

FDB045AN08A0

N－Channel PowerTrench ${ }^{\circledR}$ MOSFET

75 V， $80 \mathrm{~A}, 4.5 \mathrm{~m} \Omega$

Features

－$R_{D S(o n)}=3.9 \mathrm{~m} \Omega$（ Typ．）＠ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}$
－ $\mathrm{Q}_{\mathrm{G}(\text { tot })}=92 \mathrm{nC}($ Typ．$) @ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
－Low Miller Charge
－Low $Q_{r r}$ Body Diode
－UIS Capability（Single Pulse and Repetitive Pulse）

Formerly developmental type 82684

Applications

－Synchronous Rectification for ATX／Server／Telecom PSU
－Battery Protection Circuit
－Motor drives and Uninterruptible Power Supplies

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	FDB045AN08A0	Units
$\mathrm{V}_{\mathrm{DSS}}$	Drain to Source Voltage	75	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate to Source Voltage	± 20	V
I_{D}	Drain Current Continuous $\left(\mathrm{T}_{\mathrm{C}}<137^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$	90	A
	Continuous $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}\right.$, with $\left.\mathrm{R}_{\theta \mathrm{JA}}=43^{\circ} \mathrm{C} / \mathrm{W}\right)$	19	A
	Pulsed	Figure 4	A
E_{AS}	Single Pulse Avalanche Energy（Note 1）	600	mJ
P_{D}	Power dissipation	310	W
	Derate above $25^{\circ} \mathrm{C}$	2.0	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature	-55 to 175	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{CJ}}$	Thermal Resistance Junction to Case	0.48	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance Junction to Ambient（Note 2）	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance Junction to Ambient，1 in ${ }^{2}$ copper pad area	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB045AN08A0	FDB045AN08A0	$D^{2}-P A K$	330 mm	24 mm	800 units

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

On Characteristics

$\mathrm{V}_{\mathrm{GS} \text { (TH) }}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2	-	4	V
${ }^{\text {r }}$ D(ON)	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	0.0039	0.0045	Ω
		$\mathrm{I}_{\mathrm{D}}=37 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=6 \mathrm{~V}$	-	0.0056	0.0084	
		$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	-	0.008	0.011	
Dynamic Characteristics						
$\mathrm{C}_{\text {ISS }}$	Input Capacitance	$\begin{aligned} & V_{D S}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	6600	-	pF
$\mathrm{C}_{\text {OSS }}$	Output Capacitance		-	1000	-	pF
$\mathrm{C}_{\mathrm{RSS}}$	Reverse Transfer Capacitance		-	240	-	pF
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge at 10V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 10V		92	138	nC
$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	Threshold Gate Charge	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 2V $\mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}$	-	11	17	nC
Q_{gs}	Gate to Source Gate Charge	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$	-	27	-	nC
$\mathrm{Q}_{\mathrm{gs} 2}$	Gate Charge Threshold to Plateau		-	16	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	21	-	nC

Switching Characteristics ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$)

t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=80 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=3.3 \Omega \end{aligned}$	-	-	160	ns
$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	Turn-On Delay Time		-	18	-	ns
t_{r}	Rise Time		-	88	-	ns
$\mathrm{t}_{\text {d(OFF) }}$	Turn-Off Delay Time		-	40	-	ns
t_{f}	Fall Time		-	45	-	ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time		-	-	128	ns

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=80 \mathrm{~A}$	-	-	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=40 \mathrm{~A}$	-	-	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{dl}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	53	ns
Q_{RR}	Reverse Recovered Charge	$\mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{dl}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	54	nC

Notes:
1: Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=0.48 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=50 \mathrm{~A}$.
2: Pulse Width $=100$ s

Typical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. Normalized Power Dissipation vs Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

Typical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 5. Forward Bias Safe Operating Area

Figure 7. Transfer Characteristics

Figure 9. Drain to Source On Resistance vs Drain Current

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 6. Unclamped Inductive Switching Capability

Figure 8. Saturation Characteristics

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 13. Capacitance vs Drain to Source Voltage

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 14. Gate Charge Waveforms for Constant Gate Currents

Test Circuits and Waveforms

Figure 15. Unclamped Energy Test Circuit

Figure 17. Gate Charge Test Circuit

Figure 19. Switching Time Test Circuit

Figure 16. Unclamped Energy Waveforms

Figure 18. Gate Charge Waveforms

Figure 20. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$, and thermal resistance $\mathrm{R}_{\theta \mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that $T_{J M}$ is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{R_{\theta J A}} \tag{EQ.1}
\end{equation*}
$$

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of $P_{D M}$ is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta J A}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1 oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3 . Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$
\begin{array}{rr}
R_{\theta J A}=26.51+\frac{19.84}{(0.262+\text { Area })} & \text { (EQ. 2) } \\
R_{\theta J A}=26.51+\frac{128}{(1.69+\text { Area })} & \text { Area in Inches Squared } \\
& \text { (EQ. 3) } \tag{EQ.3}
\end{array}
$$

Figure 21. Thermal Resistance vs Mounting Pad Area

PSPICE Electrical Model

RSOURCE 87 RSOURCEMOD 2.3e-3
RVTHRES 228 RVTHRESMOD 1
RVTEMP 1819 RVTEMPMOD 1
S1A 612138 S1AMOD
S1B 1312138 S1BMOD
S2A 6151413 S2AMOD
S2B 13151413 S2BMOD
VBAT 2219 DC 1
ESLC 5150 VALUE $=\left\{(\mathrm{V}(5,51) / \operatorname{ABS}(\mathrm{V}(5,51)))^{*}(\operatorname{PWR}(\mathrm{~V}(5,51) /(1 \mathrm{e}-6 * 250), 10))\right\}$
.$M O D E L D B O D Y M O D D(I S=2.4 \mathrm{e}-11 \mathrm{~N}=1.04 \mathrm{RS}=1.76 \mathrm{e}-3 \quad$ TRS1 $=2.7 \mathrm{e}-3 \quad \mathrm{TRS} 2=2 \mathrm{e}-7 \mathrm{XTI}=3.9 \mathrm{CJO}=4.35 \mathrm{e}-9 \mathrm{TT}=1 \mathrm{e}-8$
$M=5.4 \mathrm{e}-1$)
.MODEL DBREAKMOD D (RS = 1.5e-1 TRS1 $=1 \mathrm{e}-3$ TRS2 $=-8.9 \mathrm{e}-6$)
.MODEL DPLCAPMOD D (CJO = 1.35e-9 IS = 1e-30 N=10 M = 0.53)
MODEL MMEDMOD NMOS (VTO $=3.7 \mathrm{KP}=9 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u} \mathrm{RG}=1.36$)
.MODEL MSTROMOD NMOS (VTO $=4.4 \mathrm{KP}=250 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u})$
$. M O D E L$ MWEAKMOD NMOS (VTO $=3.05 \mathrm{KP}=0.03 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{uW}=1 \mathrm{u} \mathrm{RG}=1.36 \mathrm{e} 1 \mathrm{RS}=0.1)$
.MODEL RBREAKMOD RES (TC1 $=1.05 \mathrm{e}-3$ TC2 $=-9 \mathrm{e}-7$)
.MODEL RDRAINMOD RES (TC1 = 1.9e-2 TC2 = 4e-5)
.MODEL RSLCMOD RES (TC1 = 1.3e-3 TC2 = 1e-5)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
MODEL RVTHRESMOD RES (TC1 = -6e-3 TC2 $=-1.9 \mathrm{e}-5$)
.MODEL RVTEMPMOD RES (TC1 $=-2.4 \mathrm{e}-3 \mathrm{TC} 2=1 \mathrm{e}-6$)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON =-4.0 VOFF=-1.5)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON =-1.5 VOFF=-4.0)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF $=0.1$ VON $=-1.0$ VOFF=0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF $=0.1$ VON $=0.5$ VOFF=-1.0)
.ENDS

Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical ModeI

REV March 2002

template FDB045AN08A0 n2,n1,n3
electrical n2, n1,n3
\{
var i iscl
dp.. model dbodymod $=($ isl $=2.4 \mathrm{e}-11, \mathrm{n} 1=1.04, \mathrm{rs}=1.76 \mathrm{e}-3, \mathrm{trs} 1=2.7 \mathrm{e}-3, \operatorname{trs} 2=2 \mathrm{e}-7, \mathrm{xti}=3.9, \mathrm{cjo}=4.35 \mathrm{e}-9, \mathrm{tt}=1 \mathrm{e}-8, \mathrm{~m}=5.4 \mathrm{e}-1)$ dp..model dbreakmod $=(r s=1.5 \mathrm{e}-1, \operatorname{trs} 1=1 \mathrm{e}-3$, trs2 $=-8.9 \mathrm{e}-6)$
dp.. model dplcapmod $=(\mathrm{cjo}=1.35 \mathrm{e}-9$, isl $=10 \mathrm{e}-30, \mathrm{nl}=10, \mathrm{~m}=0.53)$
m..model mmedmod $=\left(\right.$ type $=_\mathrm{n}$, vto $=3.7, \mathrm{kp}=9$, is $=1 \mathrm{e}-30$, tox $=1$)
m..model mstrongmod $=\left(\right.$ type $=_n$, vto $=4.4, \mathrm{kp}=250$, is $=1 \mathrm{e}-30$, tox $=1$)
m. .model mweakmod $=\left(\right.$ type $=_\mathrm{n}$, vto $=3.05, \mathrm{kp}=0.03$, is $=1 \mathrm{e}-30$, tox $=1, \mathrm{rs}=0.1$)
sw_vcsp..model s1amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-4.0$, voff $=-1.5)$
sw_vcsp..model s1bmod $=($ ron $=1 e-5$, roff $=0.1$, von $=-1.5$, voff $=-4.0)$
sw_vcsp..model s2amod $=($ ron $=1 e-5$, roff $=0.1$, von $=-1.0$, voff $=0.5)$
sw_vcsp..model s2bmod $=(\operatorname{ron}=1 e-5$, roff $=0.1$, von $=0.5$, voff $=-1.0)$
c.ca $\mathrm{n} 12 \mathrm{n} 8=1.5 \mathrm{e}-9$
c.cb n15 n14 = 1.5e-9
c. cin $\mathrm{n} 6 \mathrm{n} 8=6.4 \mathrm{e}-9$
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
I.Idrain n2 n5 $=1 \mathrm{e}-9$
I. Igate n1 n9 $=4.81 \mathrm{e}-9$
I.Isource n3 n7 = 4.63e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$ m.mstrong n16 n6 n8 n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$ m.mweak n16 n21 n8 n8 = model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
res.rbreak n17 n18 = 1, tc1 $=1.05 \mathrm{e}-3, \mathrm{tc} 2=-9 \mathrm{e}-7$ res.rdrain n50 n16 $=9 \mathrm{e}-4$, tc $1=1.9 \mathrm{e}-2, \mathrm{tc} 2=4 \mathrm{e}-5$ res.rgate n9 n20 $=1.36$
res.rldrain n2 n5 = 10
res.rlgate n1 n9 $=48.1$
res.rlsource n3 n7 = 46.3
res.rslc1 n5 n51 $=1 \mathrm{e}-6, \mathrm{tc} 1=1 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-5$
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 $=2.3 \mathrm{e}-3, \mathrm{tc} 1=1 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$
res.rvtemp n18 n19 = 1, tc1 $=-2.4 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$
 res.rvthres $\mathrm{n} 22 \mathrm{n} 8=1$, tc1 $=-6 \mathrm{e}-3, \mathrm{tc} 2=-1.9 \mathrm{e}-5$

```
spe.ebreak n11 n7 n17 n18=82.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 =1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10))
}
}
```


SPICE Thermal Model

```
REV 23 March }200
FDB045AN08AOT
CTHERM1 th 6 6.45e-3
CTHERM2 }65\mathrm{ 3e-2
CTHERM3 5 4 1.4e-2
CTHERM4 4 3 1.65e-2
CTHERM5 3 2 4.85e-2
CTHERM6 2 tl 1e-1
RTHERM1 th \(63.24 \mathrm{e}-3\)
RTHERM2 65 8.08e-3
RTHERM3 54 2.28e-2
RTHERM4 \(431 \mathrm{e}-1\)
RTHERM5 32 1.1e-1
RTHERM6 2 tl 1.4e-1
```


SABER Thermal Model

SABER thermal model FDB045AN08A0T
template thermal_model th tl thermal_c th, tl
\{
ctherm.ctherm1 th $6=6.45 \mathrm{e}-3$
ctherm.ctherm2 $65=3 \mathrm{e}-2$
ctherm.ctherm3 $54=1.4 \mathrm{e}-2$
ctherm.ctherm4 $43=1.65 \mathrm{e}-2$ ctherm.ctherm5 $32=4.85 \mathrm{e}-2$ ctherm.ctherm6 $2 \mathrm{tl}=1 \mathrm{e}-1$
rtherm.rtherm1 th $6=3.24 \mathrm{e}-3$
rtherm.rtherm2 $65=8.08 \mathrm{e}-3$
rtherm.rtherm3 $54=2.28 \mathrm{e}-2$
rtherm. rtherm4 $43=1 \mathrm{e}-1$
rtherm. rtherm5 $32=1.1 \mathrm{e}-1$ rtherm. rtherm6 $2 \mathrm{tl}=1.4 \mathrm{e}-1$ \}

Mechanical Dimensions

TO-263 2L (D²PAK)

NOTES: UNLESS OTHERWISE SPECIFIED A) ALL DIMENSIONS ARE IN MILLIMETERS. B) REFERENCE JEDEC, TO-263, VARIATION A C) DIMENSIONING AND TOLERANCING PER C) ANSI Y14.5M-1994.
D) LOCATION OF THE PIN HOLE MAY VARY
) LOCATION OF THE PIN HOLE MAY VARY AND CENTER OF THE PACKAGE).
AND CENTER OF THE PACKAGE). LANDPATTERN RECO
TO254P1524X482-3N
F) FILENAME: TO263A02REV6

Figure 22. 2LD, TO263, Surface Mount
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/package/packageDetails.html?id=PN TT263-002

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {TM }}$
AX-CAP ${ }^{\text {®* }}$	FRFET ${ }^{\text {® }}$	${ }^{(3)}$	- SYSTEM ${ }^{\circledR}$ *
BitSiC ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	PowerTrench ${ }^{\circledR}$	
Build it Now $^{\text {TM }}$	GreenBridge ${ }^{\text {TM }}$	PowerXS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Green FPS ${ }^{\text {TM }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBoost ${ }^{\circledR}$
CorePOWER ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyBuck
CROSSVOLT ${ }^{\text {TM }}$	Gmax ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {TM }}$
CTL ${ }^{\text {TM }}$	GTO $^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	$\begin{aligned} & \text { TinyLogic } \\ & \text { TINYOPTOTм } \end{aligned}$
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	$)^{\mathrm{TM}}$	TinyPWM ${ }^{\text {™ }}$
Dual Cool ${ }^{\text {TM }}$	Marking Small Speakers Sound Louder		TinyWire ${ }^{\text {TM }}$
EcoSPARK ${ }^{\circledR}$	and Better ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TinyWire ${ }^{\text {m }}$
EfficentMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$	SignalWise ${ }^{\text {TM }}$	
ESBC ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$ TRUECURRENT ${ }^{\circledR \text { ®* }}$
5	MicroFET ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	μ SerDes $^{\text {TM }}$
Fairchild	MicroPak MicroPak2	Solutions for Your Success ${ }^{\text {SM }}$ SPM	ω
Fairchild Semiconductor ${ }^{\circledR}$	MillerDrive ${ }^{\text {™ }}$	STEALTH ${ }^{\text {™ }}$	SerDes"
FACT Quiet Series ${ }^{\text {TM }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {® }}$	UHC ${ }^{\text {® }}$
FACT ${ }^{\text {® }}$	mWSaver ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-3	Ultra FRFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	OptoHiT ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	UniFET ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8	VCX ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	OPTOPLANAR ${ }^{\circledR}$	SupreMOS ${ }^{\circledR}$	VisualMax ${ }^{\text {TM }}$
FPS ${ }^{\text {™ }}$		SyncFET ${ }^{\text {TM }}$	VoltagePlus ${ }^{\text {TM }}$

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:

