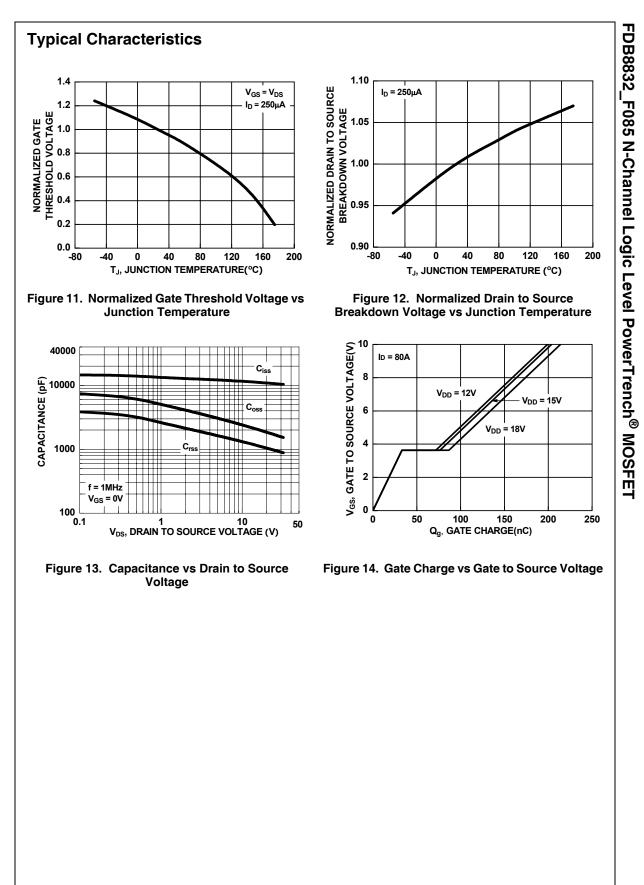

Symbol	Parameter					Ratings			Units		
V _{DSS}	Drain to Source Voltage						30			V	
V _{GS}	Gate to Source Voltage					±20			V		
	Drain Current Continuous (T _C < 165°C, V _{GS} = 10V)					80					
I _D	Drain Current Continuous ($T_C < 163^{\circ}C$, $V_{GS} = 5V$)					80			A		
.0	Drain Current Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 43^{\circ}C/W$)					34					
	Pulsed					See Figure 4					
E _{AS}	Single Pulse Avalanche Energy (Note 1)					1246			mJ		
P _D	Power Dissipation					300			W		
	Derate above 25°C						2			W/ºC	
		and Storage Temp	erature					-55 to +17	'5	°C	
Therm	al Cha	racteristics									
$R_{ ext{ heta}JC}$	Thermal R	esistance, Junction	to Case				0.5			°C/W	
$R_{ heta JA}$	Thermal R	esistance, Junction	to Ambient			(Note 2)	62		°C/W		
$R_{ heta JA}$	Thermal R	esistance, Junction	to Ambient, I	lin ² copper pad area				43		°C/W	
	ge Mar	king and Or	derina In	for	nation		1			-	
	Marking	Device	Package		Reel Size	Та	pe Widt	h	Quant	titv	
	38832	FDB8832 F085	TO-263A		330mm		24mm			-	
101	JUUUL	1 00002_1 000	10 200/	SAB SSUIIII			2711111		800 units		
Electr	ical Cha	aracteristics	5 T _J = 25°C u	nless o	otherwise note	d					
Symbol		Parameter			Test Condition	ons	Min	Тур	Max	Units	
Off Cha	racterist	ics									
B _{VDSS}	Drain to So	ource Breakdown V	oltage	I _D = 2	50μA, V _{GS} = 0	V	30	-	-	V	
- 1035			•	$V_{\rm DS} = 24V$			-	-	1		
I _{DSS}	Zero Gate Voltage Drain Current		ent	$V_{GS} = 0V$ $T_J = 150^{\circ}C$			-	-	250	μΑ	
I _{GSS}	Gate to Sc	ource Leakage Curr	ent	V _{GS} =		,	-	-	±100	nA	
	racterist	ics						1		1	
	T			$V_{DS} = V_{GS}, I_D = 250 \mu A$						T	
	Gate to Sc	surce Threshold Vo	Itage		V_{co} $l_{p} = 250$	цА	10	16	3.0	V	
	Gate to So	ource Threshold Vo					1.0 -	1.6 1.4	3.0 1.9	V	
	Gate to So	ource Threshold Vo		I _D = 80	0A, V _{GS} = 10V		-	1.4	1.9	V	
V _{GS(th)}		ource Threshold Vo		$I_{\rm D} = 80$ $I_{\rm D} = 80$	0A, V _{GS} = 10V 0A, V _{GS} = 5V	,	1.0 - -	1.4 1.5	1.9 2.1	-	
			ce	$I_{\rm D} = 80$ $I_{\rm D} = 80$ $I_{\rm D} = 80$	0A, V _{GS} = 10V 0A, V _{GS} = 5V 0A, V _{GS} = 4.5V	/	-	1.4 1.5 1.6	1.9 2.1 2.2	 	
V _{GS(th)}			ce	$I_{\rm D} = 80$ $I_{\rm D} = 80$ $I_{\rm D} = 80$	0A, V _{GS} = 10V 0A, V _{GS} = 5V 0A, V _{GS} = 4.5V 0A, V _{GS} = 10V	/	-	1.4 1.5	1.9 2.1	-	
V _{GS(th)} r _{DS(on)} Dynam	Drain to Si	ource On Resistand	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$	0A, V _{GS} = 10V 0A, V _{GS} = 5V 0A, V _{GS} = 4.5V 0A, V _{GS} = 10V	/	-	1.4 1.5 1.6	1.9 2.1 2.2	-	
V _{GS(th)} r _{DS(on)} Dynam C _{iss}	Drain to S	ource On Resistand	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$	$\begin{array}{l} \text{DA, } V_{\text{GS}} = 10 \text{V} \\ \text{DA, } V_{\text{GS}} = 5 \text{V} \\ \text{DA, } V_{\text{GS}} = 4.5 \text{V} \\ \text{DA, } V_{\text{GS}} = 10 \text{V} \\ \text{DA, } V_{\text{GS}} = 10 \text{V} \\ \text{75}^{\circ}\text{C} \end{array}$	/	-	1.4 1.5 1.6	1.9 2.1 2.2	-	
V _{GS(th)} r _{DS(on)}	Drain to S ic Charac Input Capa Output Ca	ource On Resistand cteristics acitance pacitance	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = 80$	$\begin{array}{l} \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 4.5\text{V}\\ \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{75^{\circ}C}\\ \end{array}$	/	-	1.4 1.5 1.6 2.3	1.9 2.1 2.2	mΩ	
V _{GS(th)} r _{DS(on)} Dynam C _{iss}	Drain to S ic Charac Input Capa Output Ca	ource On Resistand cteristics acitance	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = f = 1M$	DA, $V_{GS} = 10V$ DA, $V_{GS} = 5V$ DA, $V_{GS} = 4.5V$ DA, $V_{GS} = 10V$ 75°C 15V, $V_{GS} = 0$ IHz	, , , ,	- - -	1.4 1.5 1.6 2.3 11400	1.9 2.1 2.2 3.0	mΩ pF	
V _{GS(th)} r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss} R _G	Drain to S ic Charac Input Capa Output Ca Reverse T Gate Resi	ource On Resistand cteristics acitance pacitance 'ransfer Capacitanc stance	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = f = 1M$ $V_{GS} = 0$	DA, $V_{GS} = 10V$ DA, $V_{GS} = 5V$ DA, $V_{GS} = 4.5V$ DA, $V_{GS} = 10V$ 75°C 15V, $V_{GS} = 0^{\circ}$ IHz	, , , ,	- - - - -	1.4 1.5 1.6 2.3 11400 2140 1260 1.2	1.9 2.1 2.2 3.0 - -	mΩ pF pF	
V _{GS(th)} T _{DS(on)} C _{iss} C _{oss} C _{rss} R _G	Drain to S ic Charao Input Capa Output Ca Reverse T Gate Resi Total Gate	ource On Resistant cteristics acitance pacitance ransfer Capacitance stance o Charge at 10V	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = f = 1M$ $V_{GS} = V_{GS} = 0$	$\begin{array}{c} \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 4.5\text{V}\\ \text{DA, } V_{\text{GS}} = 4.5\text{V}\\ \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{75^{\circ}C}\\ \end{array}$, , , ,	· · · ·	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204	1.9 2.1 2.2 3.0 - - -	mΩ pF pF	
V _{GS(th)} r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)}	Drain to S ic Charae Input Capa Output Ca Reverse T Gate Resi Total Gate Total Gate	ource On Resistant cteristics acitance pacitance iransfer Capacitance stance e Charge at 10V e Charge at 5V	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$	DA, $V_{GS} = 10V$ DA, $V_{GS} = 5V$ DA, $V_{GS} = 4.5V$ DA, $V_{GS} = 10V$ 75°C 15V, $V_{GS} = 10V$ 15V, $V_{GS} = 0^{\circ}$ IHZ 0.5V, f = 1MH 0 to 10V 0 to 5V	/ / / / / / / / / / / / / / / / / / /	- - - - - - -	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100	1.9 2.1 2.2 3.0 - - - 265 130	mΩ pF pF pF	
$\frac{V_{GS}(th)}{r_{DS}(on)}$	Drain to S ic Charac Input Cap Output Ca Reverse T Gate Resi Total Gate Total Gate Threshold	ource On Resistant cteristics acitance pacitance ransfer Capacitance stance charge at 10V charge at 5V Gate Charge	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$	$\begin{array}{c} \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 4.5\text{V}\\ \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{75^{\circ}C}\\ \end{array}$ $\begin{array}{c} 15\text{V, } V_{\text{GS}} = 0\text{V}\\ \text{Hz}\\ \hline 0.5\text{V, } f = 1\text{MH}\\ \hline 0 \text{ to } 10\text{V}\\ \hline 0 \text{ to } 5\text{V}\\ \hline 0 \text{ to } 5\text{V}\\ \hline 0 \text{ to } 1\text{V}\\ \hline \end{array}$	/ / / / / / / / / / / / / / / / / / /	- - - - - - -	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100 10.9	1.9 2.1 2.2 3.0 - - - - - 265	mΩ pF pF pF Ω nC nC	
$V_{GS(th)}$ $r_{DS(on)}$ $Dynam$ C_{iss} C_{rss} R_{G} $Q_{g(TOT)}$ $Q_{g(5)}$ Q_{gS}	Drain to S ic Charae Input Capa Output Ca Reverse T Gate Resi Total Gate Total Gate Threshold Gate to Sc	ource On Resistant cteristics acitance pacitance ransfer Capacitance stance charge at 10V charge at 5V Gate Charge purce Gate Charge	ce	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$	$\begin{array}{c} \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 4.5\text{V}\\ \text{DA, } V_{\text{GS}} = 10\text{V}\\ 75^{\circ}\text{C}\\ \end{array}$ $\begin{array}{c} 15\text{V, } V_{\text{GS}} = 0\text{V}\\ \text{Hz}\\ \hline 0.5\text{V, } f = 1\text{MH}\\ \hline 0 \text{ to } 10\text{V}\\ \hline 0 \text{ to } 5\text{V}\\ \hline 0 \text{ to } 1\text{V}\\ \hline 0 \text{ to } 1\text{V}\\ \end{array}$	/ / / / / / / / / / / / / / / / / / /	- - - - - - - - - - - - - - - - -	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100 10.9 33	1.9 2.1 2.2 3.0 - - - 265 130	mΩ pF pF Ω nC nC nC	
$\frac{V_{GS}(th)}{r_{DS}(on)}$	Drain to Si ic Charae Input Capa Output Ca Reverse T Gate Resi Total Gate Total Gate Threshold Gate to Sc Gate Char	ource On Resistant cteristics acitance pacitance ransfer Capacitance stance charge at 10V charge at 5V Gate Charge	ce e ateau	$I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $I_{D} = 80$ $T_{J} = 1$ $V_{DS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$ $V_{GS} = 1$	$\begin{array}{c} \text{DA, } V_{\text{GS}} = 10\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 5\text{V}\\ \text{DA, } V_{\text{GS}} = 4.5\text{V}\\ \text{DA, } V_{\text{GS}} = 10\text{V}\\ 75^{\circ}\text{C}\\ \end{array}$ $\begin{array}{c} 15\text{V, } V_{\text{GS}} = 0\text{V}\\ \text{Hz}\\ \hline 0.5\text{V, } f = 1\text{MH}\\ \hline 0 \text{ to } 10\text{V}\\ \hline 0 \text{ to } 5\text{V}\\ \hline 0 \text{ to } 1\text{V}\\ \hline 0 \text{ to } 1\text{V}\\ \end{array}$	/ / / / / / / / / / / / / / / / / / /	- - - - - - - - - - - - - - - - - - -	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100 10.9	1.9 2.1 2.2 3.0 - - - 265 130	mΩ pF pF pF Ω nC nC	

FDB8832_F085 N-Channel Logic Level PowerTrench[®] MOSFET


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Switchi	ng Characteristics					
t _(on)	Turn-On Time		-	-	155	ns
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15V, I _D = 80A	-	24	-	ns
t _r	Turn-On Rise Time		-	73	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 5V, R_{GS} = 1.5\Omega$	-	54	-	ns
t _f	Turn-Off Fall Time		-	38	-	ns
t _{off}	Turn-Off Time		-	-	149	ns
		I _{SD} = 75A	-	0.8	1.25	V
Drain-S	ource Diode Characteristics			1	1	
V_{SD}	Source to Drain Diode Voltage	$I_{SD} = 40A$	-	0.8	1.0	V
t _{rr}	Reverse Recovery Time	$I_F = 75A$, di/dt = 100A/µs	-	59	77	ns
Q _{rr}	Reverse Recovery Charge	I _F = 75A, di/dt = 100A/μs	-	67	87	nC
1: Starting T 2: Pulse widt	_J = 25°C, L = 0.61mH, I _{AS} = 64A, V _{DD} = 30V, V _{GS} = h = 100s.	- 10V.				

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

FDB8832_F085 Rev. A1

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ Auto-SPM™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™ F R Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FETBench™

F-PFS™ **FRFET**[®] Global Power Resource SM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFFT™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR®** PDP SPM™

Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™)™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™

GENERAL ®* The Power Franchise® bwer

p franchise

TinvBoost™ TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ **TRUECURRENT™*** µSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FlashWriter®*

FPSTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDB8832_F085