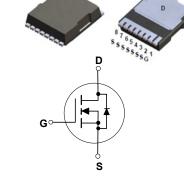


March 2016

FDBL86566_F085

N-Channel PowerTrench[®] MOSFET 60 V, 240 A, 2.4 m Ω


Features

- Typical $R_{DS(on)}$ = 1.9 m Ω at V_{GS} = 10V, I_D = 80 A
- Typical $Q_{q(tot)}$ = 80 nC at V_{GS} = 10V, I_D = 80 A
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

Applications

- Automotive Engine Control
- PowerTrain Management
- Solenoid and Motor Drivers
- Integrated Starter/Alternator
- Primary Switch for 12V Systems

For current package drawing, please refer to the Fairchild website at http://www.fairchildsemi.com/dwg/PS/PSOF08A.pdf.

MOSFET Maximum Ratings $T_J = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter		Ratings	Units	
V_{DSS}	Drain-to-Source Voltage		60	V	
V_{GS}	Gate-to-Source Voltage		±20	V	
	Drain Current - Continuous (V_{GS} =10) (Note 1) T_C = 25°C Pulsed Drain Current T_C = 25°C		240	Α	
ID			See Figure 4		
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	193	mJ	
D	Power Dissipation		300	W	
P_{D}	Derate Above 25°C		2.0	W/°C	
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case		0.5	°C/W	
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	(Note 3)	43	°C/W	

Notes:

- 1: Current is limited by silicon
- 2: Starting $T_J = 25^{\circ}C$, $L = 50 \mu H$, $I_{AS} = 88A$, $V_{DD} = 60 V$ during inductor charging and $V_{DD} = 0 V$ during time in avalanche.
- 3: R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,JC} is guaranteed by design, while R_{0,JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDBL86566	FDBL86566_F085	MO-299A	13"	24mm	2000 units

Units

Max.

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted.

Parameter

Off Characteristics							
B _{VDSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A$,	V _{GS} = 0V	60	-	-	V
	Drain to Course Leakage Current	V _{DS} =60V,	$T_{\rm J} = 25^{\rm o}{\rm C}$	-	-	1	μА
I _{DSS} Drain-to-Source Leakage Current		$V_{GS} = 0V$	$T_J = 175^{\circ}C \text{ (Note 4)}$	-	-	1	mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20V		1	-	±100	nA

Test Conditions

Min.

Тур.

On Characteristics

Symbol

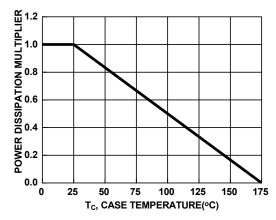
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$		2.0	3.2	4.0	٧
R _{DS(op)} Drain to Source On Resistance	I _D = 80A,	$T_{\rm J} = 25^{\rm o}{\rm C}$	-	1.9	2.4	$m\Omega$	
R _{DS(on)}	RDS(on) Diam to Source on Resistance	V _{GS} = 10V	$T_J = 175^{\circ}C \text{ (Note 4)}$	ı	3.5	4.5	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 30V, V _{GS} = 0V, f = 1MHz		-	6655	-	pF
C _{oss}	Output Capacitance			-	1745	-	pF
C _{rss}	Reverse Transfer Capacitance			-	57	-	pF
R_g	Gate Resistance	f = 1MHz		-	2.2	-	Ω
$Q_{g(ToT)}$	Total Gate Charge at 10V	V_{GS} = 0 to 10V	V _{DD} = 30V	-	80	110	nC
$Q_{g(th)}$	Threshold Gate Charge	V_{GS} = 0 to 2V	I _D = 80A	-	12	-	nC
Q_{gs}	Gate-to-Source Gate Charge		_	-	35	-	nC
Q_{gd}	Gate-to-Drain "Miller" Charge			-	10	-	nC

Switching Characteristics

t _{on}	Turn-On Time		-	-	86	ns
t _{d(on)}	Turn-On Delay		-	37	-	ns
t _r	Rise Time	V_{DD} = 30V, I_{D} = 80A, V_{GS} = 10V, R_{GEN} = 6 Ω	-	29	-	ns
t _{d(off)}	Turn-Off Delay		-	39	-	ns
t _f	Fall Time		-	13	-	ns
t _{off}	Turn-Off Time		-	-	68	ns


Drain-Source Diode Characteristics

V	Source-to-Drain Diode Voltage	I _{SD} =80A, V _{GS} = 0V	-	-	1.25	V
V_{SD}	Source-to-Drain blode voltage	I_{SD} = 40A, V_{GS} = 0V	-	-	1.2	٧
t _{rr}	Reverse-Recovery Time	$I_F = 80A$, $dI_{SD}/dt = 100A/\mu s$,	-	78	102	ns
Q _{rr}	Reverse-Recovery Charge	V _{DD} =48V	-	100	130	nC

Note

4: The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

Typical Characteristics

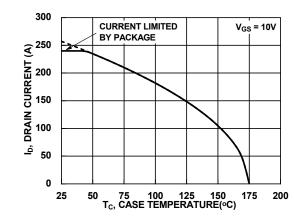


Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs.

Case Temperature

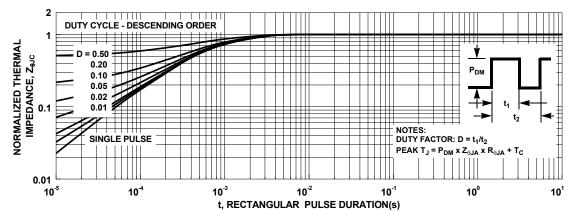


Figure 3. Normalized Maximum Transient Thermal Impedance

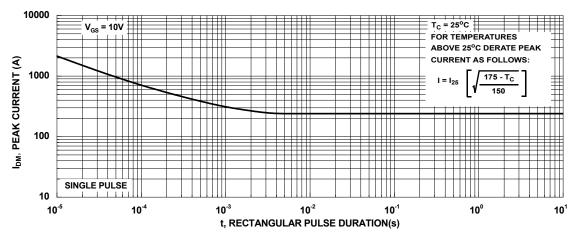


Figure 4. Peak Current Capability

Typical Characteristics

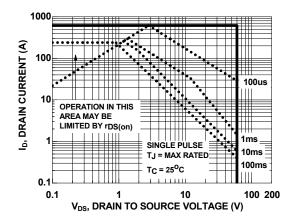
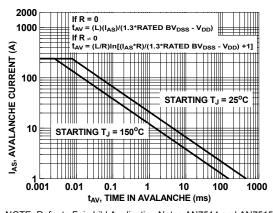



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

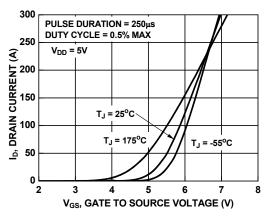


Figure 7. Transfer Characteristics

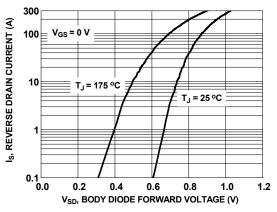


Figure 8. Forward Diode Characteristics

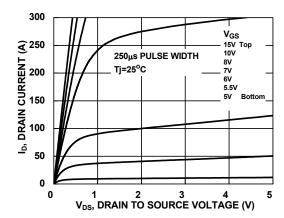


Figure 9. Saturation Characteristics

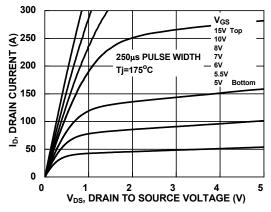


Figure 10. Saturation Characteristics

Typical Characteristics



Figure 11. R_{DSON} vs. Gate Voltage

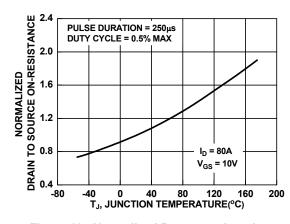


Figure 12. Normalized R_{DSON} vs. Junction Temperature

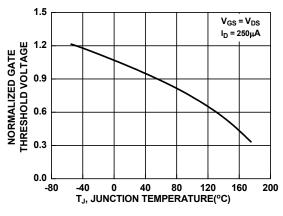


Figure 13. Normalized Gate Threshold Voltage vs. Temperature

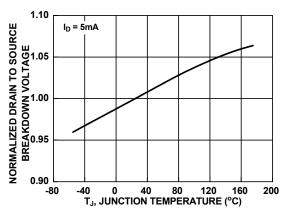


Figure 14. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

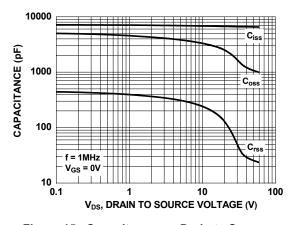


Figure 15. Capacitance vs. Drain to Source Voltage

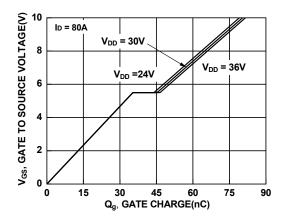


Figure 16. Gate Charge vs. Gate to Source Voltage

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AttitudeEngine™ Awinda® AX-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™

 $CROSSVOLT^{TM}$ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Fairchild[®]

Fairchild Semiconductor® FACT Quiet Series™ FACT®

FastvCore™ FETBench™ **FPS™**

F-PFS™ FRFET®

Global Power ResourceSM

GreenBridge™ Green FPS™

Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder and Better™

MegaBuck™ MIČROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™

MillerDrive™ MotionMax₋™ MotionGrid[®] $\mathsf{MTx}^{\mathbb{R}}$ MVN® mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR®

R

 $Power\ Supply \ WebDesigner^{\intercal_{M}}$

PowerTrench⁶ PowerXS™

Programmable Active Droop™

OFFT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® . SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

Sync-Lock™

SYSTEM ®* TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童®

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

FDBL86566_F085