


## **MOSFET Maximum Ratings** T<sub>1</sub> = 25°C unless otherwise noted.

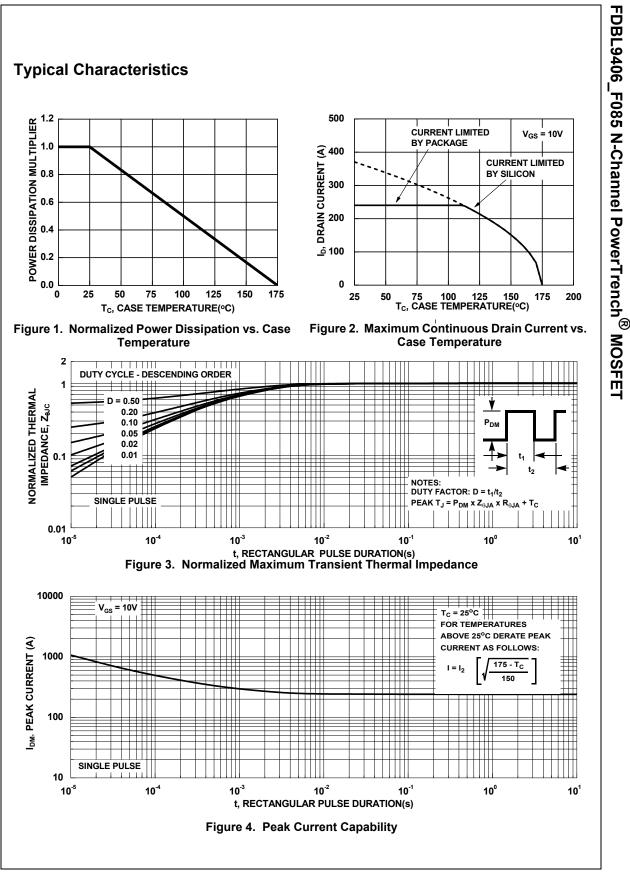
| Symbol                            | Parameter                                                 |                       | Ratings      | Units |  |
|-----------------------------------|-----------------------------------------------------------|-----------------------|--------------|-------|--|
| V <sub>DSS</sub>                  | Drain-to-Source Voltage                                   |                       | 40           | V     |  |
| V <sub>GS</sub>                   | Gate-to-Source Voltage                                    |                       | ±20          | V     |  |
| I <sub>D</sub>                    | Drain Current - Continuous (V <sub>GS</sub> =10) (Note 1) | T <sub>C</sub> =25°C  | 240          | Α     |  |
|                                   | Pulsed Drain Current                                      | T <sub>C</sub> = 25°C | See Figure 4 |       |  |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy                             | (Note 2)              | 316          | mJ    |  |
| P <sub>D</sub>                    | Power Dissipation                                         |                       | 300          | W     |  |
|                                   | Derate Above 25°C                                         |                       | 2.0          | W/ºC  |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature                         |                       | -55 to + 175 | °C    |  |
| R <sub>0JC</sub>                  | Thermal Resistance, Junction to Case                      |                       | 0.5          | °C/W  |  |
| R <sub>0JA</sub>                  | Maximum Thermal Resistance, Junction to Ambient (Note 3)  |                       | 43           | °C/W  |  |

#### Notes:

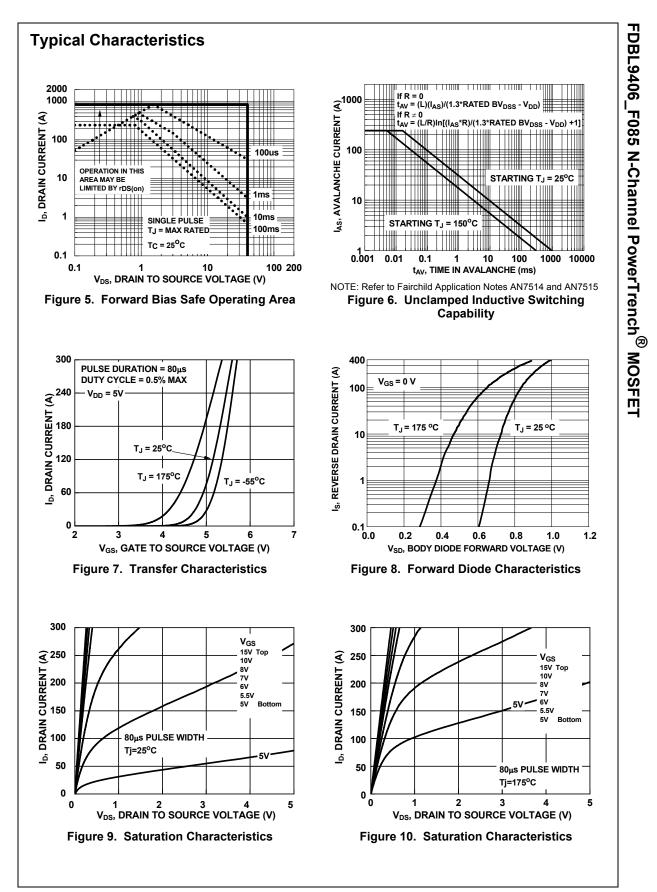
1: Current is limited by bondwire configuration.

2: Starting T<sub>J</sub> = 25°C, L = 0.1mH,  $I_{AS}$  = 79.5A,  $V_{DD}$  = 40V during inductor charging and  $V_{DD}$  = 0V during time in avalanche. 3:  $R_{0,JA}$  is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins.  $R_{\theta JC}$  is guaranteed by design, while  $R_{\theta JA}$  is determined by the board design. The maximum rating presented here is based on mounting on a 1 in<sup>2</sup> pad of 2oz copper.

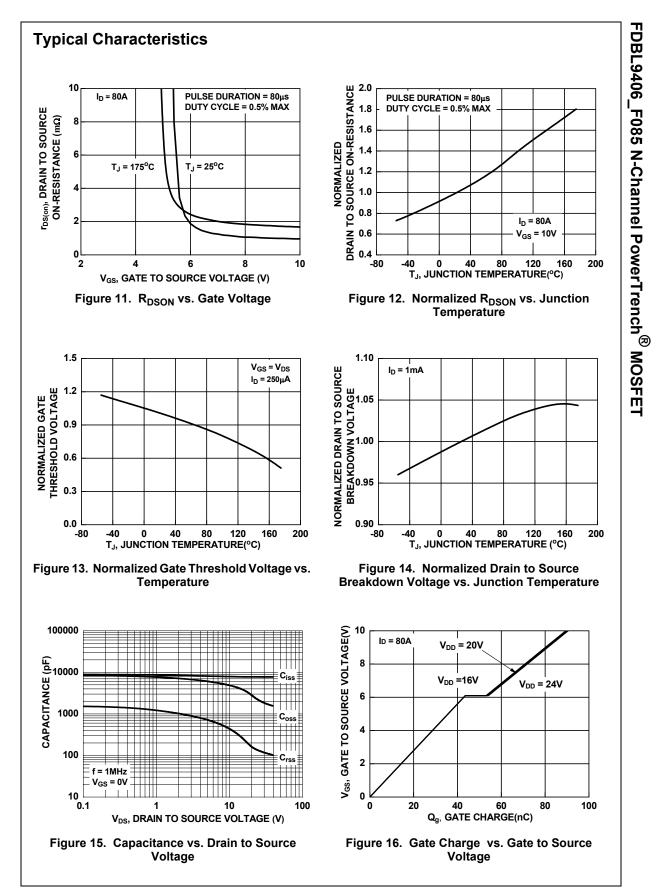
# Package Marking and Ordering Information


| Device Marking | Device        | Package |   |   |   |
|----------------|---------------|---------|---|---|---|
| FDBL9406       | FDBL9406_F085 | MO-299A | - | - | - |

| Symbol                            | Parameter                         | Test Conditions                                                                                                             |     | Тур. | Max. | Units    |
|-----------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|------|------|----------|
| off Cha                           | racteristics                      |                                                                                                                             |     |      |      |          |
| B <sub>VDSS</sub>                 | Drain-to-Source Breakdown Voltage | I <sub>D</sub> = 250μA, V <sub>GS</sub> = 0V                                                                                | 40  | -    | -    | V        |
| I <sub>DSS</sub>                  | Drain-to-Source Leakage Current   | $\begin{array}{c c} V_{DS} = 40V, & T_{J} = 25^{\circ}C \\ V_{GS} = 0V & T_{J} = 175^{\circ}C \text{ (Note 4)} \end{array}$ | -   | -    | 1    | μA<br>mA |
| I <sub>GSS</sub>                  | Gate-to-Source Leakage Current    | $V_{GS} = \pm 20V$                                                                                                          | -   | -    | ±100 | nA       |
|                                   | racteristics                      |                                                                                                                             |     |      |      | 1        |
| V <sub>GS(th)</sub>               | Gate to Source Threshold Voltage  | $V_{GS} = V_{DS}, I_D = 250 \mu A$                                                                                          | 2.0 | 3.2  | 4.0  | V        |
| _                                 | Drain to Source On Resistance     | $I_{\rm D} = 80$ A, $T_{\rm J} = 25^{\rm o}$ C                                                                              | -   | 0.90 | 1.20 | mΩ       |
| R <sub>DS(on)</sub>               |                                   | $V_{GS}$ = 10V T <sub>J</sub> = 175°C (Note 4)                                                                              | -   | 1.64 | 1.86 | mΩ       |
| <b>Dynami</b><br>C <sub>iss</sub> | c Characteristics                 |                                                                                                                             |     | 7735 | -    | pF       |
| C <sub>oss</sub>                  | Output Capacitance                | $-V_{DS} = 25V, V_{GS} = 0V,$                                                                                               | -   | 2160 | _    | pF       |
| C <sub>rss</sub>                  | Reverse Transfer Capacitance      | f = 1MHz                                                                                                                    | -   | 129  | -    | pF       |
| R <sub>q</sub>                    | Gate Resistance                   | f = 1MHz                                                                                                                    | -   | 2.5  | -    | Ω        |
| Q <sub>g(ToT)</sub>               | Total Gate Charge at 10V          |                                                                                                                             | -   | 90   | 107  | nC       |
| $Q_{g(th)}$                       | Threshold Gate Charge             | $V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 32V$<br>$V_{GS} = 0 \text{ to } 2V$ $I_D = 80A$                                      | -   | 13.5 | 15.5 | nC       |
| Q <sub>gs</sub>                   | Gate-to-Source Gate Charge        |                                                                                                                             | -   | 43   | -    | nC       |
| Q <sub>gd</sub>                   | Gate-to-Drain "Miller" Charge     |                                                                                                                             | -   | 10   | -    | nC       |
| Switchi                           | ng Characteristics                |                                                                                                                             |     | -    | 102  | ns       |
| t <sub>d(on)</sub>                | Turn-On Delay                     |                                                                                                                             |     | 33   | -    | ns       |
| t <sub>r</sub>                    | Rise Time                         | V <sub>DD</sub> = 20V, I <sub>D</sub> = 80A,                                                                                | -   | 40   | -    | ns       |
| t <sub>d(off)</sub>               | Turn-Off Delay                    | $V_{GS} = 10V, R_{GEN} = 6\Omega$                                                                                           | -   | 47   | -    | ns       |
| t <sub>f</sub>                    | Fall Time                         |                                                                                                                             | -   | 23   | -    | ns       |
| t <sub>off</sub>                  | Turn-Off Time                     |                                                                                                                             | -   | -    | 91   | ns       |
|                                   | ource Diode Characteristics       |                                                                                                                             |     | 1    | 1    |          |
| V.                                | Source to Drain Diade Valtage     | I <sub>SD</sub> =80A, V <sub>GS</sub> = 0V                                                                                  | -   | -    | 1.25 | V        |
| V <sub>SD</sub>                   | Source-to-Drain Diode Voltage     | I <sub>SD</sub> = 40A, V <sub>GS</sub> = 0V                                                                                 | -   | -    | 1.2  | V        |
| t <sub>rr</sub>                   | Reverse-Recovery Time             | $I_{F} = 80A, dI_{SD}/dt = 100A/\mu s,$                                                                                     | -   | 91   | 107  | ns       |
|                                   | Reverse-Recovery Charge           | V <sub>DD</sub> =32V                                                                                                        |     | 128  | 167  | nC       |


FDBL9406\_F085 N-Channel PowerTrench<sup>®</sup> MOSFET

### Note:


4: The maximum value is specified by design at  $T_J$  = 175°C. Product is not tested to this condition in production.



FDBL9406\_F085 Rev. C2



FDBL9406\_F085 Rev. C2



FDBL9406\_F085 Rev. C2



| Freinnindry              | First Froduction  | notice to improve design.                                                                                                                             |
|--------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Identification Needed | Full Production   | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. |
| Obsolete                 | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild<br>Semiconductor. The datasheet is for reference information only.   |

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDBL9406\_F085