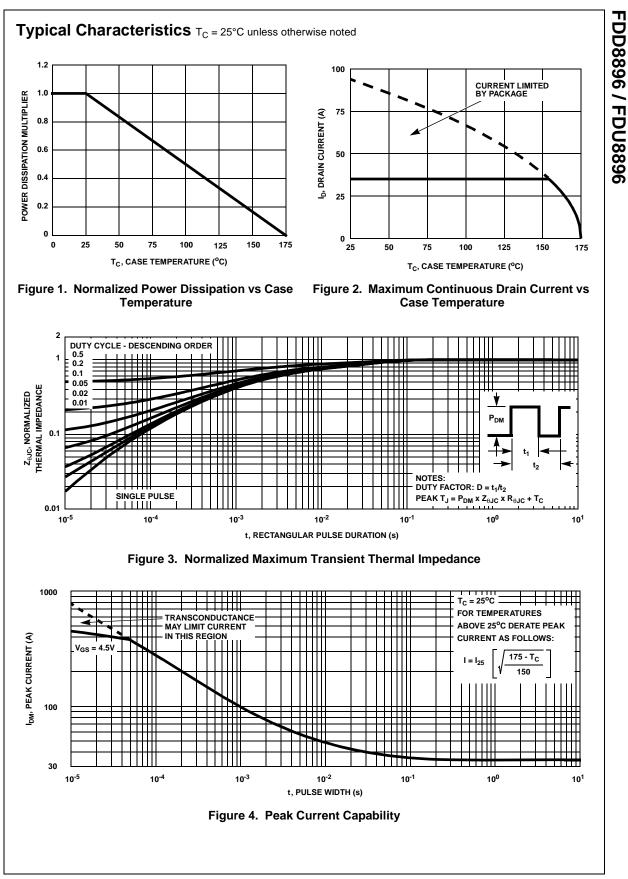
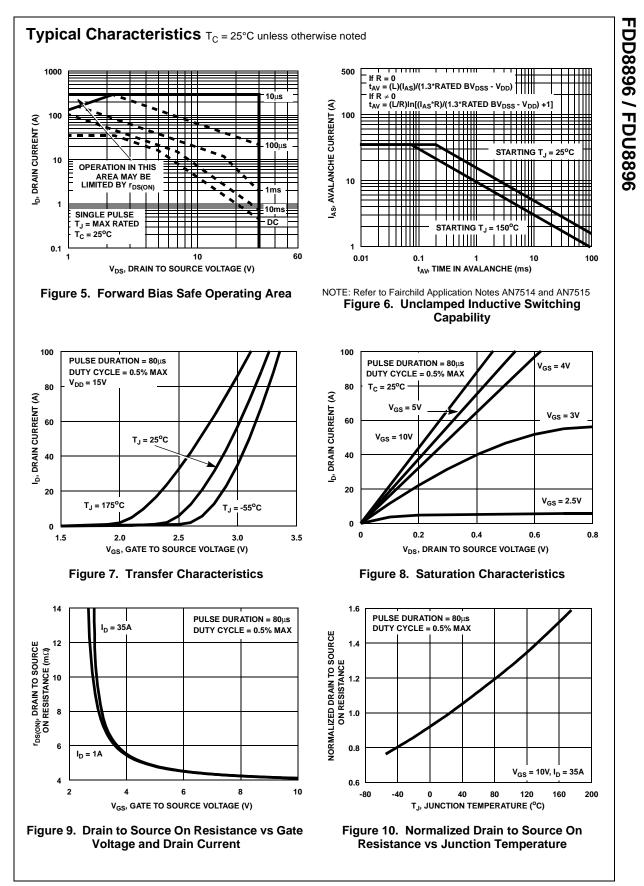


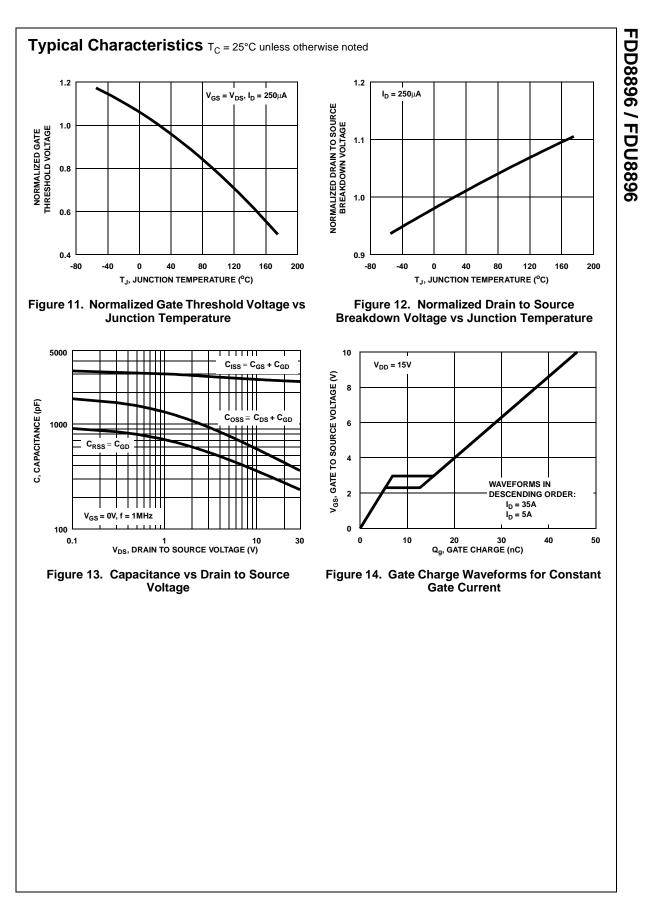
Thermal Characteristics

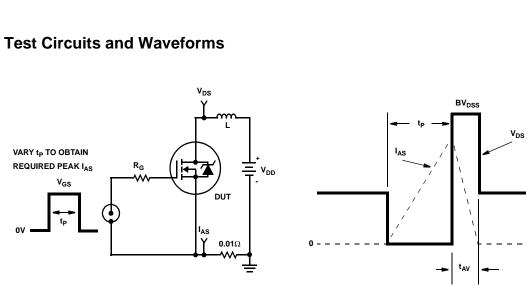

R_{\thetaJC}	Thermal Resistance Junction to Case TO-252, TO-251	1.88	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-252, TO-251	100	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

©2008 Fairchild Semiconductor Corporation


FDD8896 / FDU8896

FDD8896 / FDU8896


Symbol Off Characteris B _{VDSS} Drain I _{DSS} Zero I _{DSS} Gate I _{GSS} Gate On Characteris V _{GS(TH}) Gate r _{DS(ON}) Drain Dynamic Chara C _{ISS} Input C _{OSS} Output C _{RSS} Rever R _G Gate Q _{g(TDT)} Total Q _{gS} Gate	to Source Breakdown Voltage Gate Voltage Drain Current o Source Leakage Current tics o Source Threshold Voltage to Source On Resistance	Test	Conditions $V_{GS} = 0V$ $T_{C} = 150^{\circ}C$ $I_{D} = 250\mu A$ $I_{SS} = 10V$ $I_{SS} = 4.5V$ $I_{SS} = 10V$,	16r N/ Min 30 - - - - - - - - - - -		2500 75 u 75 u 4 1 250 ±100 2.5 0.0057 0.0068 0.0092	nits Units V μA nA V Ω pF
Electrical Ch Symbol Off Characteris B _{VDSS} Drain I _{DSS} Zero 0 I _{GSS} Gate On Characteris V _{GS(TH)} Gate r _{DS(ON)} Drain Dynamic Chara C _{ISS} Input C _{OSS} Outpu C _{RSS} Rever R _G Gate Q _{g(TH)} Total 0 Q _{g(TH)} Thres Q _{gs} Gate	aracteristics T _C = 25° Parameter tics to Source Breakdown Voltage Gate Voltage Drain Current to Source Leakage Current tics to Source Threshold Voltage to Source On Resistance to Source On Resistance cteristics Capacitance t Capacitance t Capacitance t Capacitance Resistance	C unless otherwis Test $I_D = 250\mu A,$ $V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 15V$, $T_{GS} = 15V$, $T_{GS} = 15V$	se noted Conditions $V_{GS} = 0V$ $T_C = 150^{\circ}C$ $I_D = 250\mu A$ $I_S = 10V$ $I_S = 4.5V$ $I_{SS} = 10V$,	Min 30 - - - - - - -	Typ 0.0047 0.0057 0.0075 2525 490	 1 250 ±100 2.5 0.0057 0.0068	Units V μA nA V Ω pF
Symbol Dff Characteris B _{VDSS} Drain I _{DSS} Zero I _{DSS} Gate I _{DSS} Drain I _{DSS} Drain I _{DS(ON)} Drain Oppamic Chara C _{ISS} Input C _{OSS} Output C _{RSS} Rever R _G Gate Q _{g(TH)} Total Q _{gS} Gate	Parameter tics to Source Breakdown Voltage Gate Voltage Drain Current o Source Leakage Current tics o Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance t Capacitance se Transfer Capacitance Resistance	I _D = 250µA, V _{DS} = 24V V _{GS} = 0V V _{GS} = \pm 20V V _{GS} = \pm 20V I _D = 35A, V _G I _D = 175°C V _{DS} = 15V, f = 1MHz	Conditions $V_{GS} = 0V$ $T_{C} = 150^{\circ}C$ $I_{D} = 250\mu A$ $I_{SS} = 10V$ $I_{SS} = 4.5V$ $I_{SS} = 10V$,	30 - - - - - - - - - - -	- - - 0.0047 0.0057 0.0075 2525 490	- 1 250 ±100 2.5 0.0057 0.0068	V μA nA V Ω pF pF
Off Characteris B_{VDSS} Drain I_{DSS} Zero I_{DSS} Gate I_{DSS} Gate Dn Characteris VGS(TH) Gate $r_{DS(ON)}$ Drain Dynamic Chara CISS Output CASS Output CRSS Rever RG Gate Qg(TDT) Total Qg(TH) Thres Qgs Gate	tics to Source Breakdown Voltage Gate Voltage Drain Current o Source Leakage Current tics o Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance t Capacitance Resistance Resistance	$I_{D} = 250\mu A,$ $V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = -1000$ $I_{D} = -35A, V_{C}$	$V_{GS} = 0V$ $T_C = 150^{\circ}C$ $T_D = 250\mu A$ $T_{GS} = 10V$ $T_{GS} = 10V$ $T_{GS} = 10V$ $T_{GS} = 10V$	30 - - - - - - - - - - -	- - - 0.0047 0.0057 0.0075 2525 490	- 1 250 ±100 2.5 0.0057 0.0068	V μA nA V Ω pF pF
B _{VDSS} Drain I _{DSS} Zero (I _{GSS} Gate Dn Characteris V _{GS(TH)} Gate T _{DS(ON)} Drain Dynamic Chara C _{ISS} Input C _{OSS} Output C _{RSS} Rever R _G Gate Q _{g(TDT)} Total (Q _{g(TH)} Thres Q _{gs} Gate	to Source Breakdown Voltage Gate Voltage Drain Current o Source Leakage Current tics o Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_{D} = 35A, V_{C}$ $I_{D} = 175^{\circ}C$ $V_{DS} = 15V, f$ $f = 1MHz$	$T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 250\mu A$ $T_{SS} = 10V$ $T_{SS} = 4.5V$ $T_{SS} = 10V,$	- - - 1.2 -	0.0047 0.0057 0.0075 2525 490	250 ±100 2.5 0.0057 0.0068	μΑ nA V Ω pF pF
$\begin{array}{c c} I_{\text{DSS}} & \text{Zero} & 0 \\ \hline I_{\text{GSS}} & \text{Gate} \\ \hline \textbf{On Characteris} \\ \hline \textbf{V}_{\text{GS}(\text{TH})} & \text{Gate} \\ \hline \textbf{V}_{\text{GS}(\text{TH})} & \text{Gate} \\ \hline \textbf{r}_{\text{DS}(\text{ON})} & \text{Drain} \\ \hline \textbf{Dynamic Chara} \\ \hline \textbf{C}_{\text{ISS}} & \text{Input} \\ \hline \textbf{C}_{\text{OSS}} & \text{Outpu} \\ \hline \textbf{C}_{\text{RSS}} & \text{Rever} \\ \hline \textbf{R}_{\text{G}} & \text{Gate} \\ \hline \textbf{Q}_{g(\text{TOT})} & \text{Total} \\ \hline \textbf{Q}_{g(\text{G})} & \text{Total} \\ \hline \textbf{Q}_{g(\text{TH})} & \text{Thres} \\ \hline \textbf{Q}_{gs} & \text{Gate} \\ \hline \end{array}$	Sate Voltage Drain Current o Source Leakage Current tics o Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_{D} = 35A, V_{C}$ $I_{D} = 175^{\circ}C$ $V_{DS} = 15V, f$ $f = 1MHz$	$T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 250\mu A$ $T_{SS} = 10V$ $T_{SS} = 4.5V$ $T_{SS} = 10V,$	- - - 1.2 -	0.0047 0.0057 0.0075 2525 490	250 ±100 2.5 0.0057 0.0068	μΑ nA V Ω pF pF
IGSS Gate IGSS Gate On Characteris VGS(TH) Gate rDS(ON) Drain Dynamic Chara CISS Input COSS Output CRSS Rever RG Gate Qg(TOT) Total Qg(TH) Thres Qgs Gate	o Source Leakage Current tics o Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $T_J = 175^{\circ}C$ $V_{DS} = 15V, f$ $f = 1MHz$	$I_{D} = 250 \mu A$ $I_{SS} = 10V$ $I_{SS} = 4.5V$ $I_{SS} = 10V$,	-	0.0047 0.0057 0.0075 2525 490	250 ±100 2.5 0.0057 0.0068	nA V Ω pF pF
IGSS Gate IGSS Gate On Characteris VGS(TH) Gate rDS(ON) Drain Dynamic Chara CISS Input COSS Output CRSS Rever RG Gate Qg(TOT) Total Qg(TH) Thres Qgs Gate	o Source Leakage Current tics o Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	$I_{D} = 250 \mu A$ $I_{SS} = 10V$ $I_{SS} = 4.5V$ $I_{SS} = 10V$,	-	0.0047 0.0057 0.0075 2525 490	±100 2.5 0.0057 0.0068	nA V Ω pF pF
On Characteris $V_{GS(TH)}$ Gate $r_{DS(ON)}$ Drain Dynamic Chara C_{ISS} Input C_{OSS} Output C_{RSS} Rever R_G Gate $Q_{g(TOT)}$ Total of $Q_{g(TH)}$ Thres Q_{gs} Gate	tics o Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$V_{GS} = V_{DS},$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $T_J = 175^{\circ}C$ $V_{DS} = 15V, f$ $f = 1MHz$	_{2S} = 10V _{2S} = 4.5V _{2S} = 10V,	-	0.0047 0.0057 0.0075 2525 490	2.5 0.0057 0.0068	V Ω pF
$\begin{array}{c c} V_{GS(TH)} & Gate \\ \hline \\ r_{DS(ON)} & Drain \\ \hline \\ \hline \\ Dynamic Chara \\ \hline \\ C_{ISS} & Input \\ \hline \\ C_{OSS} & Outpu \\ \hline \\ C_{RSS} & Rever \\ \hline \\ R_G & Gate \\ \hline \\ Q_{g(TOT)} & Total \\ \hline \\ Q_{g(S)} & Total \\ \hline \\ Q_{gS} & Gate \\ \hline \end{array}$	to Source Threshold Voltage to Source On Resistance cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$\frac{I_{D} = 35A, V_{C}}{I_{D} = 35A, V_{C}}$ $\frac{I_{D} = 35A, V_{C}}{I_{D} = 35A, V_{C}}$ $T_{J} = 175^{\circ}C$ $W_{DS} = 15V, f$ $f = 1MHz$	_{2S} = 10V _{2S} = 4.5V _{2S} = 10V,	-	0.0047 0.0057 0.0075 2525 490	0.0057 0.0068	Ω pF pF
$r_{DS(ON)}$ Drain Dynamic Chara C_{ISS} Input C_{OSS} Outpu C_{RSS} Rever R_G Gate $Q_{g(TOT)}$ Total Q $Q_{g(TH)}$ Thres Q_{gs} Gate	to Source On Resistance	$\frac{I_{D} = 35A, V_{C}}{I_{D} = 35A, V_{C}}$ $\frac{I_{D} = 35A, V_{C}}{I_{D} = 35A, V_{C}}$ $T_{J} = 175^{\circ}C$ $W_{DS} = 15V, f$ $f = 1MHz$	_{2S} = 10V _{2S} = 4.5V _{2S} = 10V,	-	0.0047 0.0057 0.0075 2525 490	0.0057 0.0068	Ω pF pF
$r_{DS(ON)}$ Drain Dynamic Chara C _{ISS} Input C _{OSS} Outpu C _{RSS} Rever R _G Gate Q _{g(TOT)} Total Q _{g(TH)} Thres Q _{gs} Gate	to Source On Resistance	$\frac{I_{D} = 35A, V_{C}}{I_{D} = 35A, V_{C}}$ $\frac{I_{D} = 35A, V_{C}}{I_{D} = 35A, V_{C}}$ $T_{J} = 175^{\circ}C$ $W_{DS} = 15V, f$ $f = 1MHz$	_{2S} = 10V _{2S} = 4.5V _{2S} = 10V,	-	0.0057 0.0075 2525 490	0.0057 0.0068	pF pF
Dynamic Chara C_{ISS} Input C_{OSS} Output C_{RSS} Rever R_G Gate $Q_{g(TOT)}$ Total Q_{qS} Gate	cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$\frac{I_{D} = 35A, V_{C}}{I_{D} = 35A, V_{C}}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V, f$ $f = 1MHz$	_{2S} = 4.5V _{2S} = 10V,		0.0075 2525 490		pF pF
Dynamic Chara C_{ISS} Input C_{OSS} Output C_{RSS} Rever R_G Gate $Q_{g(TOT)}$ Total $Q_{g(TH)}$ Thres Q_{gs} Gate	cteristics Capacitance t Capacitance se Transfer Capacitance Resistance	$I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V, f = 1MHz$	_{SS} = 10V,	-	2525 490	0.0092 - -	pF pF
$\begin{array}{c c} C_{\rm ISS} & {\rm Input} \\ \hline C_{\rm OSS} & {\rm Outpu} \\ \hline C_{\rm RSS} & {\rm Rever} \\ R_{\rm G} & {\rm Gate} \\ \hline Q_{g({\rm TOT})} & {\rm Total} \\ Q_{g(5)} & {\rm Total} \\ \hline Q_{g({\rm TH})} & {\rm Thres} \\ \hline Q_{gS} & {\rm Gate} \end{array}$	Capacitance t Capacitance se Transfer Capacitance Resistance	V _{DS} = 15V, ¹	V _{GS} = 0V,	-	2525 490	-	pF
$\begin{array}{c c} C_{\rm ISS} & {\rm Input} \\ \hline C_{\rm OSS} & {\rm Outpu} \\ \hline C_{\rm RSS} & {\rm Rever} \\ \hline R_{\rm G} & {\rm Gate} \\ \hline Q_{g({\rm TOT})} & {\rm Total} \\ \hline Q_{g(5)} & {\rm Total} \\ \hline Q_{g({\rm TH})} & {\rm Thres} \\ \hline Q_{gs} & {\rm Gate} \end{array}$	Capacitance t Capacitance se Transfer Capacitance Resistance	f = 1MHz	V _{GS} = 0V,	-	490	-	pF
$\begin{array}{c c} C_{OSS} & Outpu\\ \hline C_{RSS} & Rever\\ \hline R_G & Gate\\ \hline Q_{g(TOT)} & Total \\ \hline Q_{g(5)} & Total \\ \hline Q_{g(TH)} & Thres\\ \hline Q_{gs} & Gate \\ \hline \end{array}$	capacitance se Transfer Capacitance Resistance	f = 1MHz	V _{GS} = 0V,	-	490	-	pF
$\begin{array}{c c} C_{OSS} & Outpu\\ \hline C_{RSS} & Rever\\ \hline R_G & Gate\\ \hline Q_{g(TOT)} & Total \\ \hline Q_{g(5)} & Total \\ \hline Q_{g(TH)} & Thres\\ \hline Q_{gs} & Gate \\ \hline \end{array}$	se Transfer Capacitance Resistance	f = 1MHz	V _{GS} = 0V,	-		-	
$\begin{array}{c c} C_{RSS} & Rever \\ R_G & Gate \\ \hline Q_{g(TOT)} & Total \\ Q_{g(5)} & Total \\ Q_{g(TH)} & Thres \\ Q_{gs} & Gate \\ \end{array}$	se Transfer Capacitance Resistance			-	300		
R _G Gate Q _{g(TOT)} Total Q _{g(5)} Total Q _{g(TH)} Thres Q _{gs} Gate		$V_{GS} = 0.5V_{.}$			500		pF
Q _{g(5)} Total Q Q _{g(TH)} Thres Q _{gs} Gate	Gate Charge at 10V		f = 1MHz	-	2.1	-	Ω
Q _{g(5)} Total Q Q _{g(TH)} Thres Q _{gs} Gate		$V_{GS} = 0V$ to		-	46	60	nC
Q _{g(TH)} Thres Q _{gs} Gate	Gate Charge at 5V	$V_{GS} = 0V$ to	5V	-	24	32	nC
Q _{gs} Gate	nold Gate Charge	$V_{GS} = 0V$ to	$_{1V}$ V _{DD} = 15V	-	2.3	3.0	nC
Q _{gs2} Gate	o Source Gate Charge		I _D = 35A	-	6.9	-	nC
	Gate to Source Gate Charge Ig = 1.0mA Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge		-	4.6	-	nC	
U					9.8	-	nC
•	acteristics (V _{GS} = 10V)						
	$\frac{1}{2}$				Т	171	ns
	In Delay Time		V_{DD} = 15V, I _D = 35A V_{GS} = 10V, R _{GS} = 6.2Ω		9	-	ns
	•	\/45\/_			106	-	ns
	Off Delay Time				53	-	ns
	,				41	-	ns
-	Dff Time			-	-	143	ns
	iode Characteristics	I			1	1 10	110
	IOUE CHARACTERISTICS	I _{SD} = 35A					
V _{SD} Source	Source to Drain Diode Voltage			-	-	1.25	V V
	se Recovery Time	$I_{SD} = 15A$	I _{SD} /dt = 100A/μs	-		1.0 27	ns
	se Recovered Charge		$I_{SD}/dt = 100A/\mu s$	-	-	12	nC


©2008 Fairchild Semiconductor Corporation

©2004 Fairchild Semiconductor Corporation

©2008 Fairchild Semiconductor Corporation

FDD8896 / FDU8896

 V_{DD}

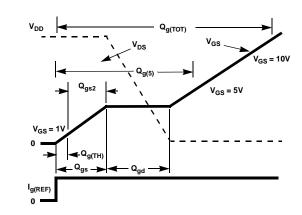
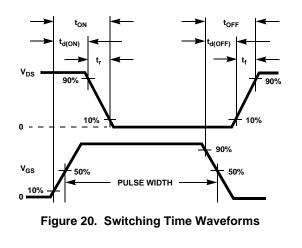



Figure 18. Gate Charge Waveforms

Figure 15. Unclamped Energy Test Circuit

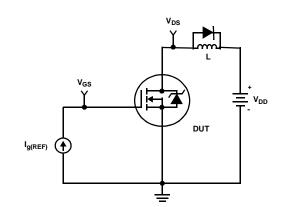


Figure 17. Gate Charge Test Circuit

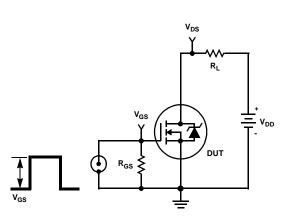


Figure 19. Switching Time Test Circuit

©2008 Fairchild Semiconductor Corporation

Thermal Resistance vs. Mounting Pad Area

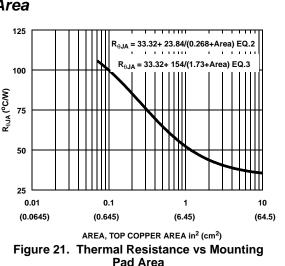
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

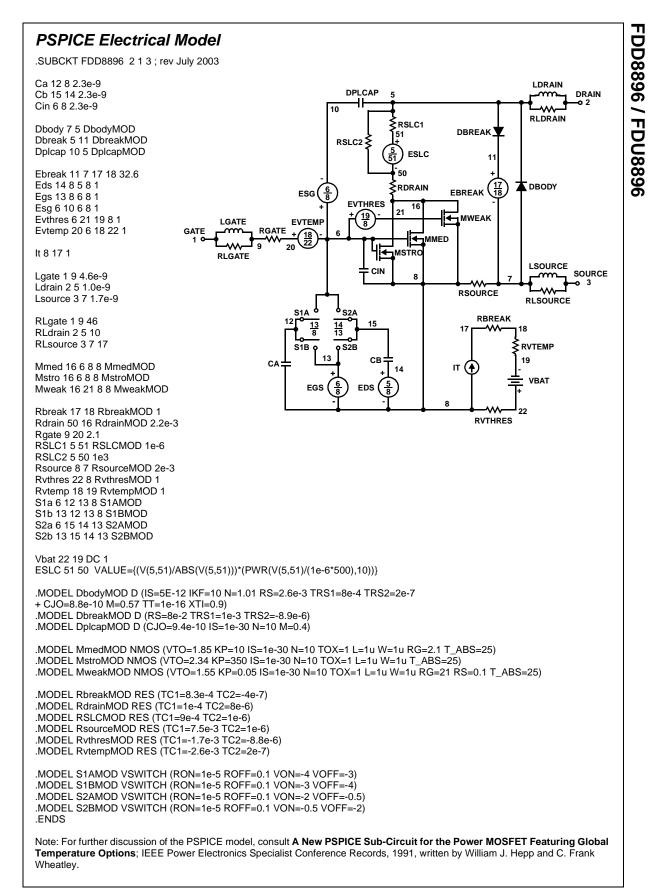
- 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

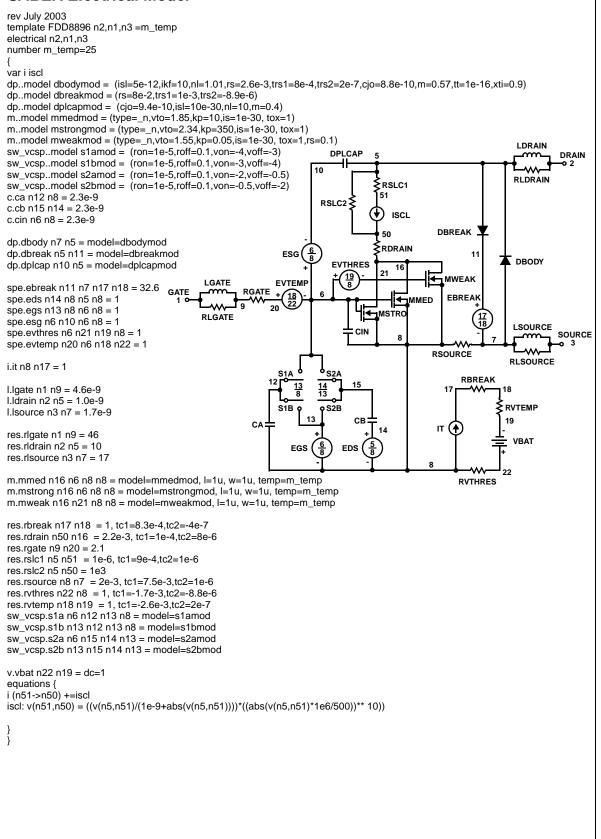

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$
 (EQ. 2)

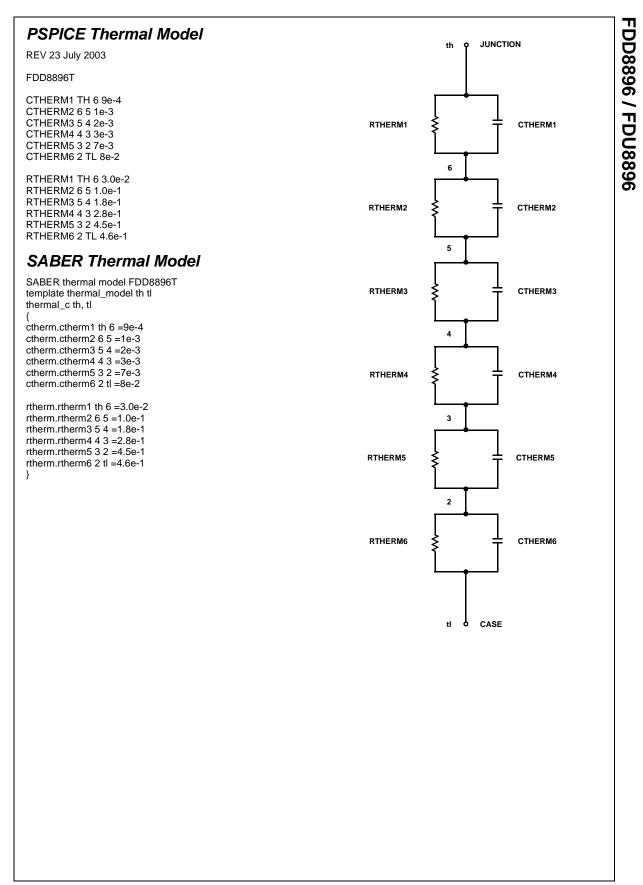
Area in Inches Squared

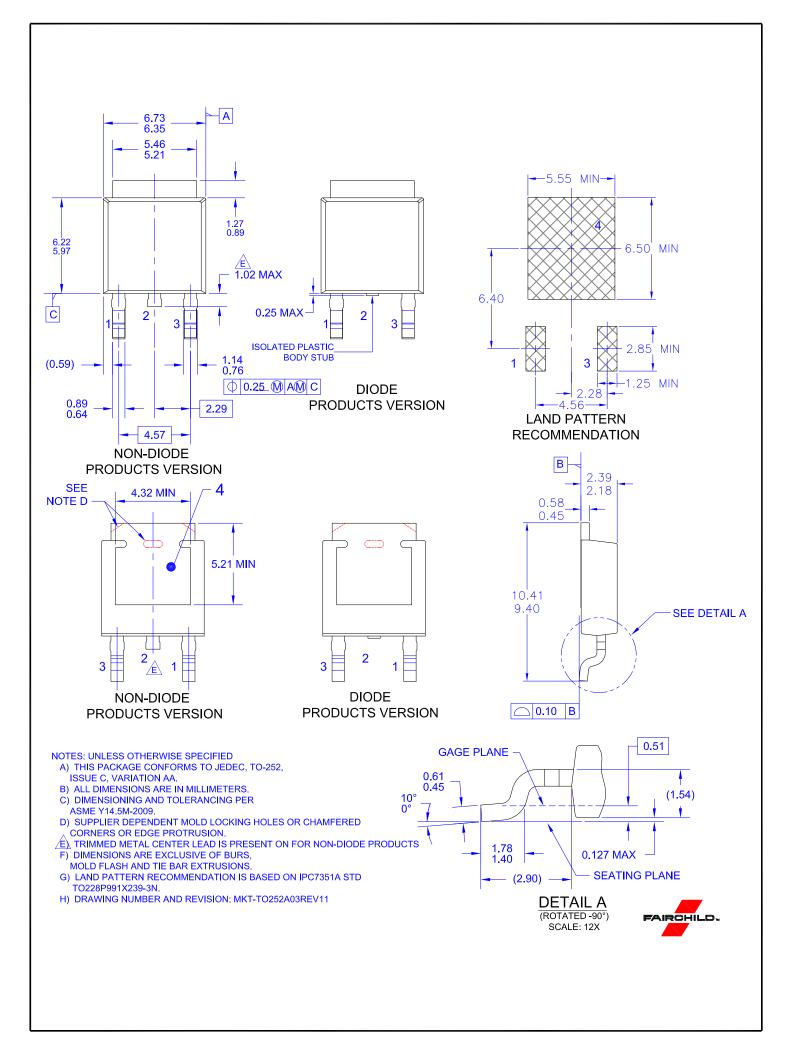

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$
 (EQ. 3)

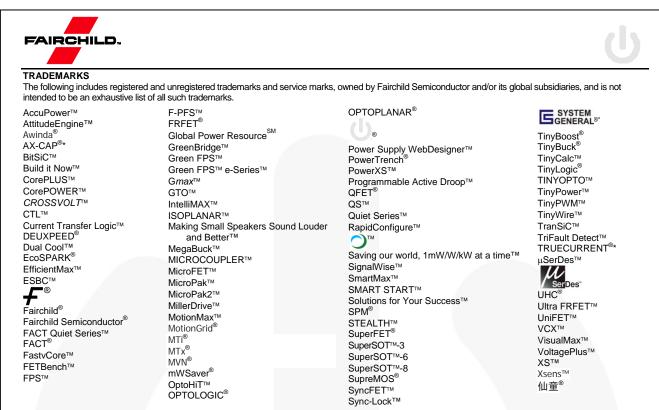
Area in Centimeters Squared



FDD8896 / FDU8896


©2008 Fairchild Semiconductor Corporation




SABER Electrical Model

DD8896 / FDU8896

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDD8896 FDD8896_NBSW006