

FDFMA2P853

Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

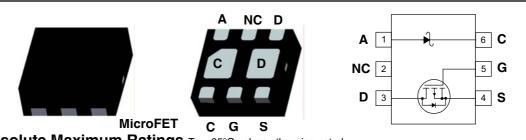
General Description

This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features a MOSFET with low on-state resistance and an independently connected low forward voltage schottky diode for minimum conduction losses.

The MicroFET 2x2 package offers exceptional thermal performance for it's physisize and is well suited to linear mode applications.

Features

MOSFET:


■ -3.0 A, -20V. $R_{DS(ON)} = 120 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 160 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$

 $R_{DS(ON)} = 240 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}$

Schottky:

V_F < 0.46 V @ 500 mA

- Low Profile 0.8 mm maximun in the new package MicroFET 2x2 mm
- RoHS Compliant

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	MOSFET Drain-Source Voltage		-20	V	
V _{GSS}	MOSFET Gate-Source Voltage		±8	V	
I _D	Drain Current -Continuous	(Note 1a)	-3.0		
	-Pulsed		-6	— A	
V _{RRM}	Schottky Repetitive Peak Reverse voltage		30	V	
I _O	Schottky Average Forward Current	(Note 1a)	1	A	
P _D	Power dissipation for Single Operation	(Note 1a)	1.4	w	
	Power dissipation for Single Operation	(Note 1b)	0.7	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

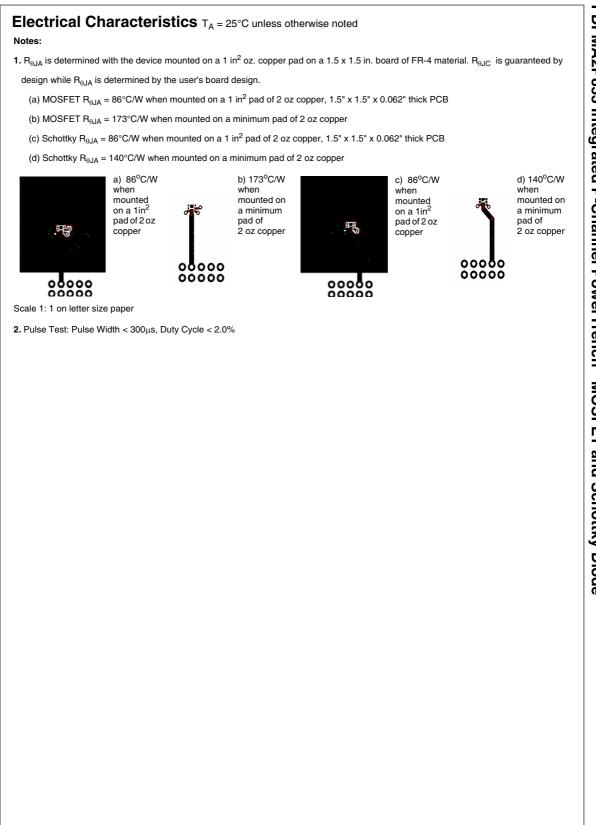
Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	86	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1d)	140	

Package Marking and Ordering Information

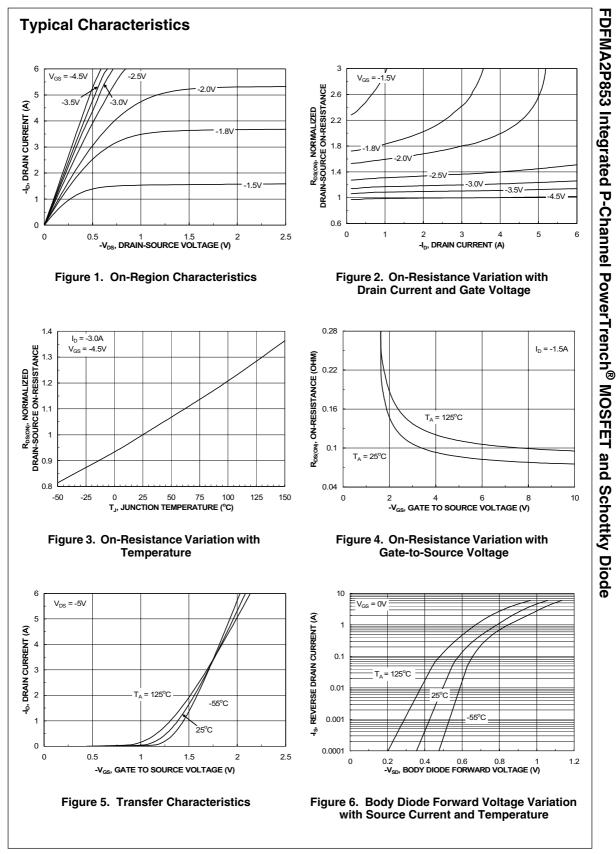
			Quantity
.853 FDFMA2P	853 7inch	8mm	3000 units

©2008 Fairchild Semiconductor Corporation

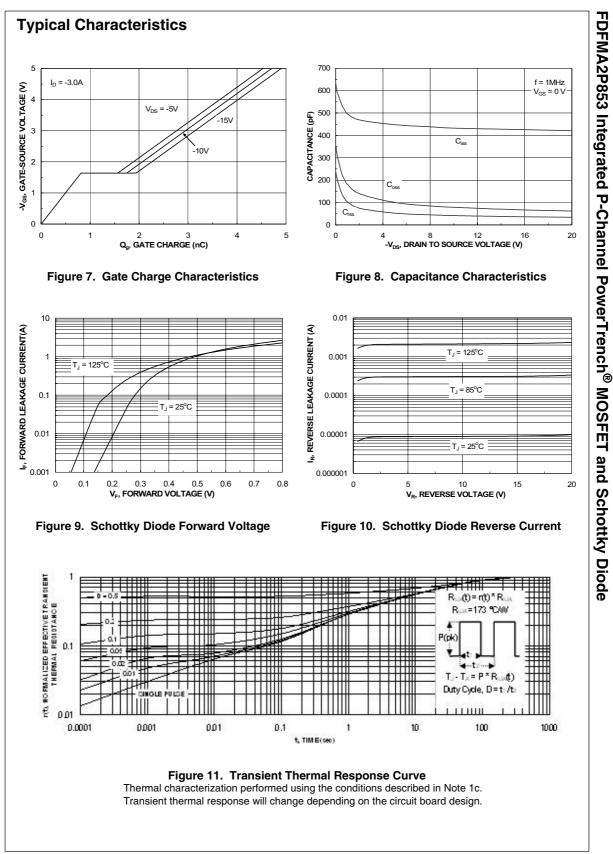

July 2014

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Char	acteristics						
BV _{DSS}	Drain–Source Breakdown Voltage	V _{GS} = 0 V,	I _D = -250 μA	-20			V
	Breakdown Voltage Temperature	1	Referenced to 25°C		-12		mV/°C
ΔΤ _J	Coefficient					<u> </u>	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$,				-1	μA
GSS	Gate-Body Leakage	$V_{GS} = \pm 8 V$,	$V_{DS} = 0 V$			±100	nA
On Chara	acteristics (Note 2)	-					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$,		-0.4	-0.7	-1.3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = –250 µA, Referenced to 25°C			2		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = -4.5 V,$			90	120	mΩ
	On–Resistance	$V_{GS} = -2.5 V,$ $V_{GS} = -1.8 V.$			120 172	160 240	
		33 ,	$T_D = -1.0 \text{ A}$ $T_D = -3.0 \text{ A}, T_J = 125^{\circ}\text{C}$		118	160	
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 V,$		-20			A
g _{FS}	Forward Transconductance	$V_{DS} = -5 V,$		20	7		s
		· · · · · · · · · · · · · · · · · · ·		1		I	
	Characteristics				425		
Ciss	Input Capacitance	$V_{DS} = -10 V$,	$V_{GS} = 0 V,$		435		pF
Coss	Output Capacitance	f = 1.0 MHz			80		pF
Crss	Reverse Transfer Capacitance			L	45		pF
	g Characteristics (Note 2)	1					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$, $V_{GS} = -4.5 V$, $R_{GEN} = 6 \Omega$			9	18	ns
t _r	Turn–On Rise Time	$v_{GS} = -4.5 V,$	$\pi_{\text{GEN}} = 0 \Omega$		11	19	ns
t _{d(off)}	Turn–Off Delay Time	4			15	27	ns
t _f	Turn–Off Fall Time				6	12	ns
Qg	Total Gate Charge	V _{DS} = -10 V, V _{GS} = -4.5 V	$I_{\rm D} = -3.0 {\rm A},$		4	6	nC
Q _{gs}	Gate–Source Charge	v _{GS} – –4.5 v			0.8		nC
Q _{gd}	Gate–Drain Charge				0.9		nC
Drain-Sc	ource Diode Characteristics	and Maximu	m Ratings				
ls	Maximum Continuous Drain-Sourc	¥				-1.1	A
V _{SD}	Drain–Source Diode Forward Voltage	V _{GS} = 0 V,	I _S = -1.1 A (Note 2)		-0.8	-1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = −3.0 A, dI _F /dt = 100 A/μs			17		ns
Q _{rr}	Diode Reverse Recovery Charge				6		nC
<u>Schottky</u>	Diode Characteristics						
I _R	Reverse Leakage	V _R = 5 V	T _J = 25°C		9.9	50	μA
			T _J = 125°C		2.3	10	mA
I _R	Reverse Leakage	V _R = 20 V	T _J = 25°C		9.9	100	μA
			T _J = 85°C		0.3	1	mA
	-		T _J = 125°C		2.3	10	mA
V _F	Forward Voltage	I _F = 500mA	T _J = 25°C		0.4	0.46	V
			T _J = 125°C		0.3	0.35	
VF	Forward Voltage	I _F = 1A	T _J = 25°C		0.5	0.55	V
	1		T _J = 125°C	1	0.49	0.54	

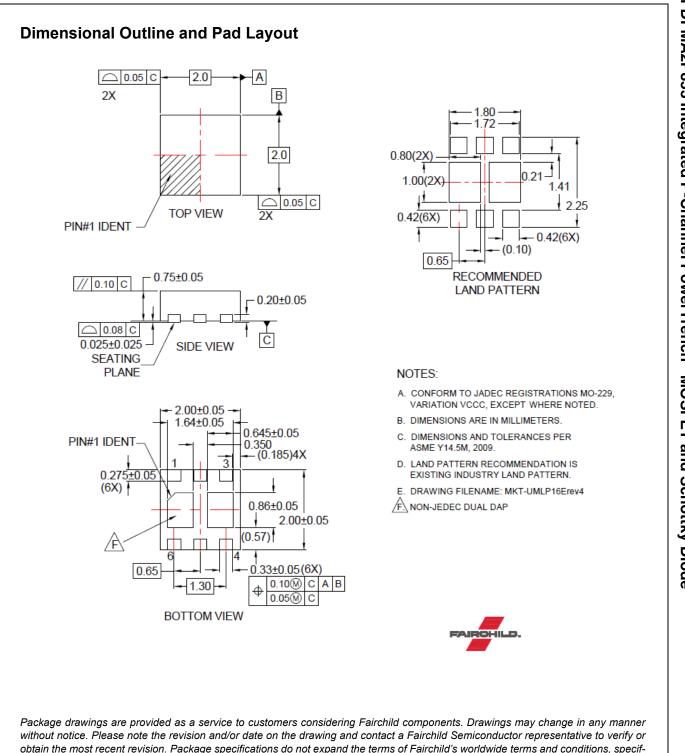
2


FDFMA2P853 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode

FDFMA2P853 Rev D3 (W)



FDFMA2P853 Integrated P-Channel PowerTrench[®] MOSFET and Schottky Diode


FDFMA2P853 Rev. D3 (W)

FDFMA2P853 Rev. D3 (W)

FDFMA2P853 Rev. D3 (W)

ically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_MLDEB-X06

Rev. 168

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDFMA2P853</u>