

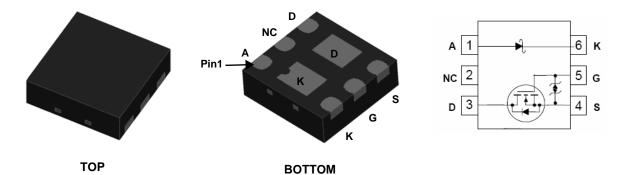
July 2010

FDFME3N311ZT

Integrated N-Channel PowerTrench[®] MOSFET and Schottky Diode 30 V, 1.8 A, 299 m Ω

Features

- Max $r_{DS(on)}$ = 299 m Ω at V_{GS} = 4.5 V, I_D = 1.6 A
- Max $r_{DS(on)}$ = 410 m Ω at V_{GS} = 2.5 V, I_D = 1.3 A
- Low profile: 0.55 mm maximum in the new package MicroFET 1.6x1.6 Thin
- Free from halogenated compounds and antimony oxides
- HBM ESD protection level > 1600 V (Note 3)
- RoHS Compliant


General Description

This device is designed specifically as a single package solution for a boost topology in cellular handset and other ultra-portable applications. It features a MOSFET with low input capacitance, total gate charge and on-state resistance. An independently connected schottky diode with low forward voltage and reverse leakage current to maximize boost efficiency.

The MicroFET 1.6x1.6 **Thin** package offers exceptional thermal performance for it's physical size and is well suited to switching and linear mode applications.

Boost Functions

MicroFET 1.6x1.6 Thin

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

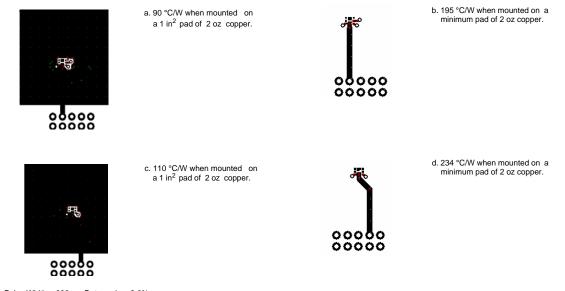
Symbol	Paramete		Ratings	Units		
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±12	V	
ID	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	1.8	^	
	-Pulsed			4.5	— A	
P _D	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1a)	1.4	14/	
	Power Dissipation for Single Operation	T _A = 25 °C	(Note 1b)	0.6	W	
V _{RRM}	Schottky Repetitive Peak Reverse Voltage			28	V	
lo	Schottky Average Forward Current			1	Α	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		(Note 4)	-55 to +150	°C	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1a)	90	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1b)	195	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1c)	110	°C/vv
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Single Operation)	(Note 1d)	234	

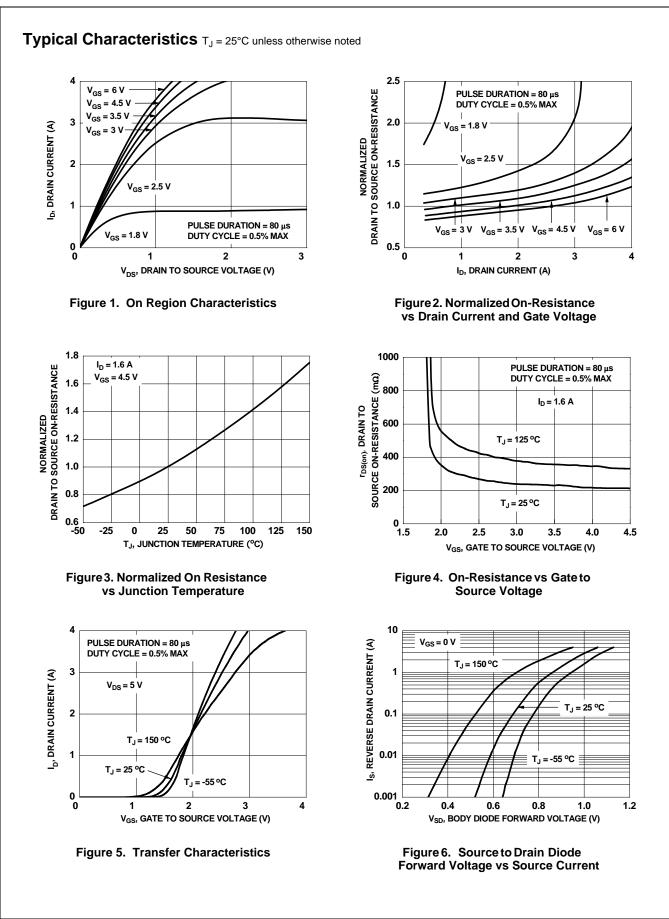
Package Marking and Ordering Information

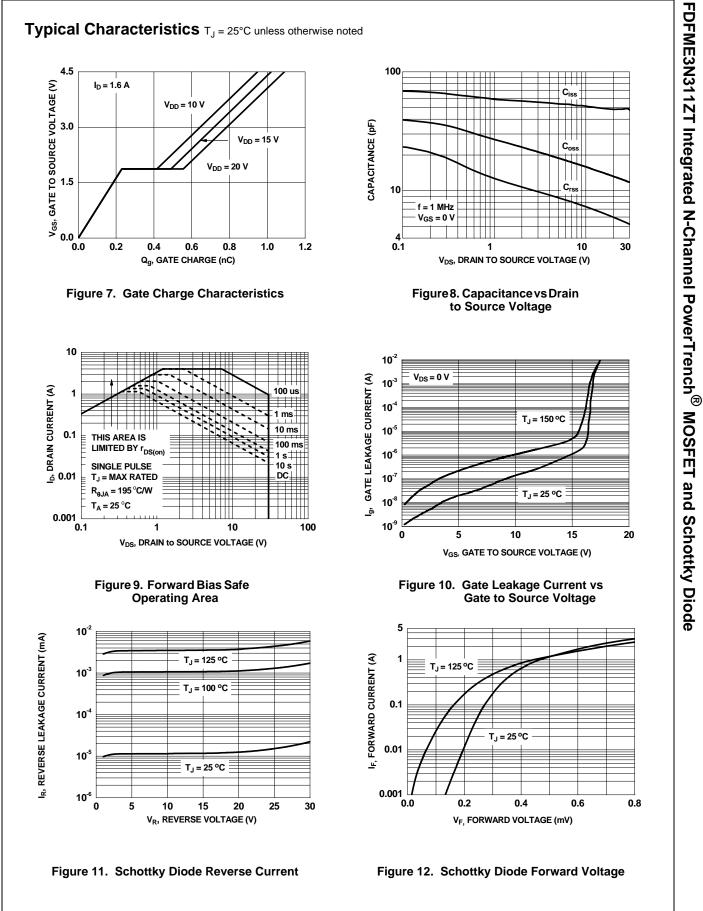
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
1T	FDFME3N311ZT	MicroFET 1.6x1.6 Thin	7"	8mm	5000 units

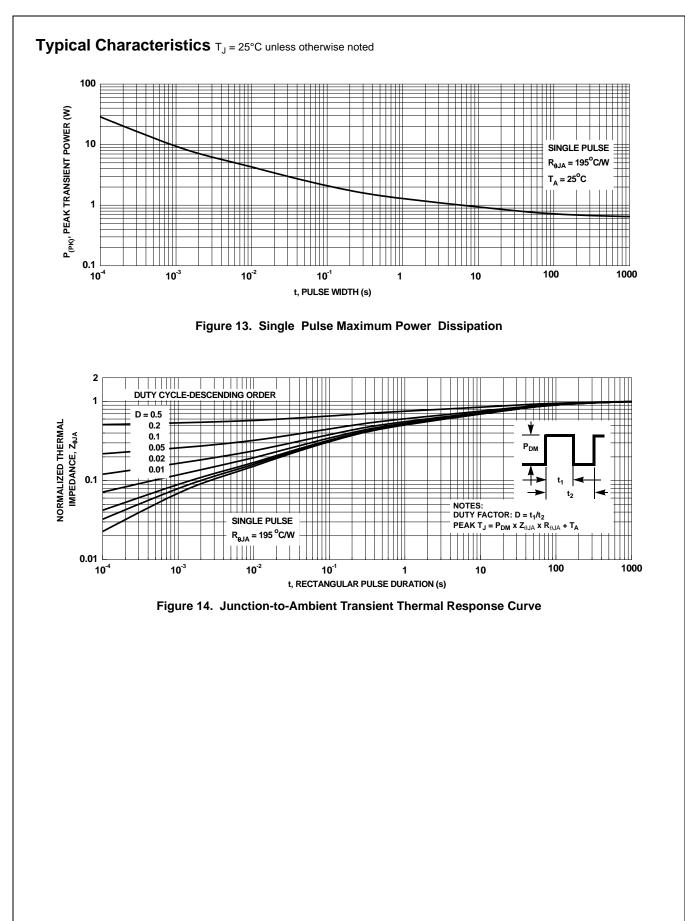

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	icteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V		30			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C			25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V	_{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$				±10	μA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D}$	= 250 μA	0.5	1	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient		$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		-3		mV/°C
0		V _{GS} = 4.5 V, I	V _{GS} = 4.5 V, I _D = 1.6 A			299	-
r _{DS(on)}	Drain to Source On Resistance	V _{GS} = 2.5 V,			296	410	mΩ
			_D = 1.6 A,T _J = 125 °C		365	603	1
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 1.6 A			2.8		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance			55	75	pF	
C _{oss}	Output Capacitance	$V_{DS} = 15 V, V_{C}$	_{GS} = 0 V,		15	20	pF
C _{rss}	Reverse Transfer Capacitance		f = 1 MHz			10	pF
R _g	Gate Resistance				7.5		Ω
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time				6	12	ns
t _r	Rise Time	V _{DD} = 15 V, I _D			8	16	ns
t _{d(off)}	Turn-Off Delay Time	— V _{GS} = 4.5 V, R	V _{GS} = 4.5 V, R _{GEN} = 6 Ω 		22	35	ns
t _f	Fall Time				1.4	10	ns
Q _g	Total Gate Charge				1	1.4	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 4.5 V, V I _D = 1.6 A	$-V_{GS} = 4.5 \text{ V}, V_{DD} = 15 \text{ V},$		0.2		nC
Q _{gd}	Gate to Drain "Miller" Charge				0.3		nC
Drain-Sou	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S =	= 0.9 A (Note 2)		0.9	1.2	V
t _{rr}	Reverse Recovery Time				12	22	ns
Q _{rr}	Reverse Recovery Charge	— I _F = 1.6 A, di/dt = 100 A/μs			3.1	10	nC
Schottky	Diode Characteristics						
	Reverse Leakage	V _R = 28 V	T _J = 25 °C		15	100	μA
I _R	Reverse Leakage	vR - 20 v	T _J = 85 °C		0.46	4.7	mA
V _F	Forward Voltage	I _F = 1 A	T _J = 25 °C		0.47	0.57	- V
			T _J = 85 °C		0.45		
V _F	Forward Voltage	I _F = 500 mA	$T_J = 25 \ ^{\circ}C$		0.38	0.48	V
•			T _J = 85 °C		0.33		1

FDFME3N311ZT Integrated N-Channel PowerTrench[®] MOSFET and Schottky Diode

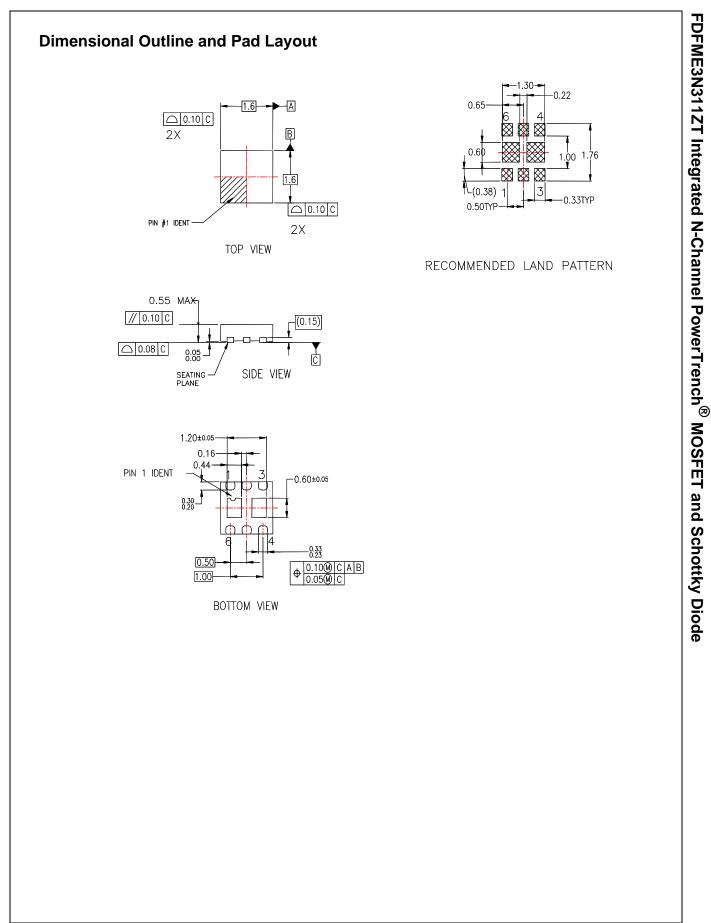
Electrical Characteristics


Notes:


- 1. R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design.
 - (a) MOSFET $R_{\theta JA} = 90 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB.
 - (b) MOSFET $R_{\theta JA}$ = 195 °C/W when mounted on a minimum pad of 2 oz copper.
 - (c) Schottky $R_{\theta JA}$ = 110 °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062" thick PCB.
 - (d) Schottky $R_{\theta JA}$ = 234 °C/W when mounted on a minimum pad of 2 oz copper.



- 2. Pulse Test: Pulse Width < 300 $\mu \text{s},$ Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied.
- 4. Rating is applicable to MOSFET only.



6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDFME3N311ZT</u>