

August 2014

FDFS6N548

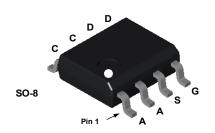
Integrated N-Channel PowerTrench® MOSFET and Schottky Diode 30V, 7A, 23m Ω

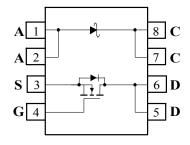
Features

- Max $r_{DS(on)}$ = 23m Ω at V_{GS} = 10V, I_D = 7A
- Max $r_{DS(on)}$ = 30m Ω at V_{GS} = 4.5V, I_D = 6A
- V_F < 0.45V @ 2A

V_F < 0.28V @ 100mA

- Schottky and MOSFET incorporated into single power surface mount SO-8 package
- Electrically independent Schottky and MOSFET pinout for design flexibility
- Low Miller Charge


General Description


The FDFS6N548 combines the exceptional performance of Fairchild's PowerTrench MOSFET technology with a very low forward voltage drop Schottky barrier rectifier in an SO-8 package.

This device is designed specifically as a single package solution for DC to DC converters. It features a fast switching, low gate charge MOSFET with very low on-state resistance. The independently connected Schottky diode allows its use in a variety of DC/DC converter topologies.

Application

■ DC/DC Conversion

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V_{DS}	Drain to Source Voltage		30	V	
V_{GS}	Gate to Source Voltage		±20	V	
	Drain Current -Continuous	(Note 1a)	7	^	
ID	-Pulsed		30	A	
В	Power Dissipation for Dual Operation		2	w	
P_{D}	Power Dissipation for Single Operation	(Note 1a)	1.6	VV	
E _{AS}	Drain-Source Avalanche Energy	(Note 3)	12	mJ	
V_{RRM}	Schottky Repetitive Peak Reverse Voltage		30	V	
I _O	Schottky Average Forward Current	(Note 1a)	2	Α	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	78	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Note 1)	40	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDFS6N548	FDFS6N548	SO-8	330mm	12mm	2500 units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Parameter	Test Conditions	Min	Тур	Max	Units
acteristics					
Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V
Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		22		mV/°C
Zero Gate Voltage Drain Current	$V_{DS} = 24V$, $V_{CS} = 0V$ $T_{L} = 125^{\circ}C$			1 250	μА
Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	acteristicsDrain to Source Breakdown Voltage $I_D = 250\mu A$, $V_{GS} = 0V$ Breakdown Voltage Temperature Coefficient $I_D = 250\mu A$, referenced to 25°CZero Gate Voltage Drain Current $V_{DS} = 24V$, $V_{GS} = 0V$ $V_{JS} = 125°C$	acteristics Drain to Source Breakdown Voltage $I_D = 250\mu A$, $V_{GS} = 0V$ 30 Breakdown Voltage Temperature Coefficient $I_D = 250\mu A$, referenced to 25°C Zero Gate Voltage Drain Current $V_{DS} = 24V$, $V_{GS} = 0V$ $V_{JS} = 125$ °C	Drain to Source Breakdown Voltage $I_D = 250\mu A$, $V_{GS} = 0V$ 30 Breakdown Voltage Temperature Coefficient $I_D = 250\mu A$, referenced to 25°C 22 Zero Gate Voltage Drain Current $V_{DS} = 24V$, $V_{GS} = 0V$ $V_{JS} = 125$ °C	acteristicsDrain to Source Breakdown Voltage $I_D = 250\mu A$, $V_{GS} = 0V$ 30Breakdown Voltage Temperature Coefficient $I_D = 250\mu A$, referenced to 25°C22Zero Gate Voltage Drain Current $V_{DS} = 24V$, $V_{GS} = 0V$ 1 $V_{DS} = 24V$, $V_{GS} = 0V$ $V_{DS} = 125^{\circ}C$ 250

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1.2	1.8	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		-5		mV/°C
		V _{GS} = 10V, I _D = 7A		19	23	
r _{DS(on)}		V _{GS} = 4.5V, I _D = 6A		23	30	mΩ
		V _{GS} = 10V, I _D = 7A, T _J = 125°C		26	31	
9 _{FS}	Forward Transconductance	$V_{DS} = 5V$, $I_D = 7A$		20		S

Dynamic Characteristics

C _{iss}	Input Capacitance	45)/)/ 0)/		525	700	рF
C _{oss}	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz		100	133	pF
C _{rss}	Reverse Transfer Capacitance	1 - 11/11/2		65	100	pF
R_g	Gate Resistance	f = 1MHz		0.8		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		6	12	ns
t _r	Rise Time	V_{DD} = 15V, I_{D} = 7A, V_{GS} = 10V, R_{GEN} = 6 Ω	2	10	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} - 10V, K _{GEN} - 012	14	25	ns
t _f	Fall Time		2	10	ns
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{DS} = 15V, I _D = 7A	9	13	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10V	1.5		nC
Q_{gd}	Gate to Drain "Miller" Charge		2		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 7A$	(Note2)	0.90	1.25	V
t _{rr}	Reverse Recovery Time	I _E = 7A. di/dt = 100A/μs		23	35	ns
Q _{rr}	Reverse Recovery Charge	1F - 7A, αι/αι - 100A/μS		14	21	nC

Schottky Diode Characteristics

V	Poverse Preskdown Veltage	1 = 1mA		-30			W
V_R	Reverse Breakdown Voltage	$I_R = -1mA$		-30			V
I _R Reverse Leakage	Poverse Leakage	\/ - 10\/	$T_J = 25^{\circ}C$		-39	-250	μΑ
	$V_R = -10V$	$T_J = 125$ °C		-18		mA	
		I _E = 100mA	T _J = 25°C		225	280	
\/	Forward Voltage	IF - TOOTIA	$T_J = 125$ °C		140		mV
V _F	i oi wai u voitage	I _E = 2A	T _J = 25°C		364	450	1117
		1F - 2A	$T_{J} = 125^{\circ}C$		290		

FDFS6N548 Rev.B1 2 www.fairchildsemi.com

Notes:

 R_{0IA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0IC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper

ωψψω b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper

c) 135°C/W when mounted on a minimun pad

- 2: Pulse Test: Pulse Width < $300\mu\text{s}$, Duty cycle < 2.0%.
- 3: Starting $T_J = 25$ °C, L = 1mH, $I_{AS} = 5.0$ A, $V_{DD} = 27$ V, $V_{GS} = 10$ V.

Typical Characteristics T_J = 25°C unless otherwise noted

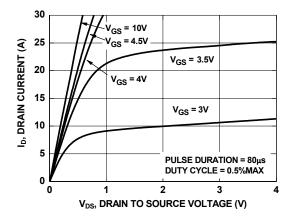


Figure 1. On Region Characteristics

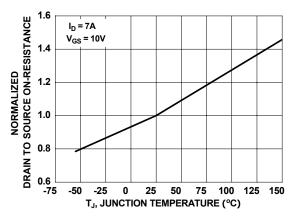


Figure 3. Normalized On-Resistance vs Junction Temperature

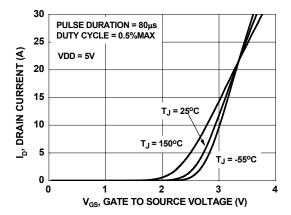


Figure 5. Transfer Characteristics

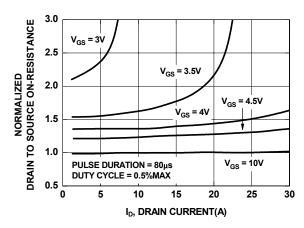


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

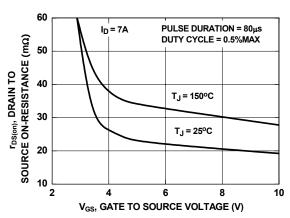


Figure 4. On-Resistance vs Gate to Source Voltage

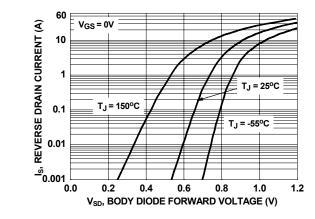


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

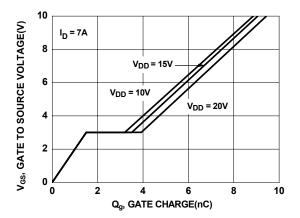


Figure 7. Gate Charge Characteristics

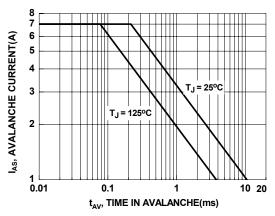


Figure 9. Unclamped Inductive Switching Capability



Figure 11. Forward Bias Safe Operating Area

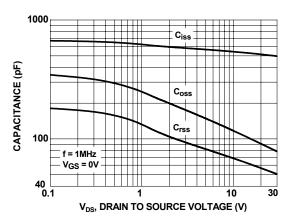


Figure 8. Capacitance vs Drain to Source Voltage

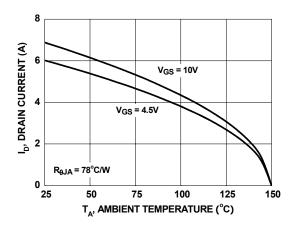


Figure 10. Maximum Continuous Drain Current vs Ambient Temperature

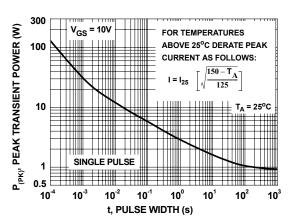
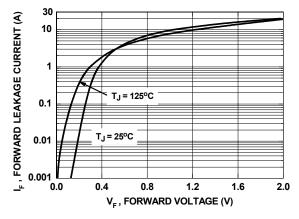



Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25°C unless otherwise noted

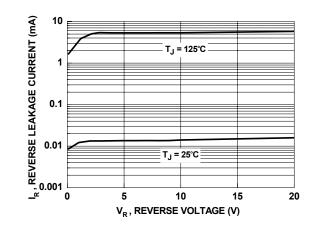


Figure 13. Schottky Diode Forward Characteristics

Figure 14. Schottky Diode Reverse Characteristics

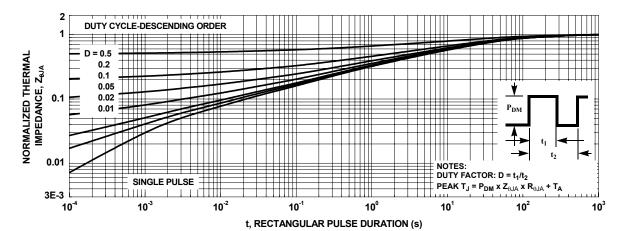
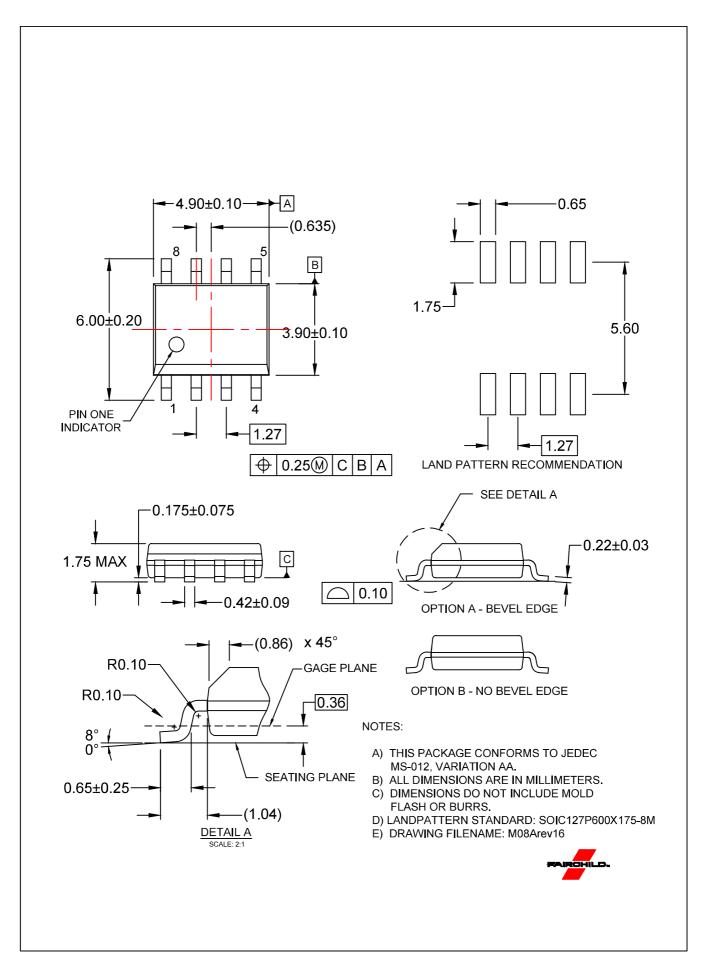



Figure 15. Transient Thermal Response Curve

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET®

Global Power ResourceSM Awinda[®] AX-CAP®* GreenBridge™

BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™ **ESBC™**

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Fairchild Semiconductor® MotionGrid® FACT Quiet Series™

MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXSTI

Programmable Active Droop™ OFFT

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM TinyBoost[®] TinyBuck[®]

TinyCalc™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™

TriFault Detect™ TRUECURRENT®* սSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XSTM. Xsens™ 仙童®

-®

Fairchild®

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev 177

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FDFS6N548