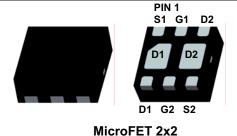
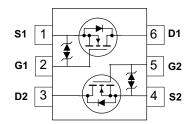


July 2014

FDMA1028NZ


Dual N-Channel PowerTrench® MOSFET


General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Features

- 3.7 A, 20V. $R_{DS(ON)} = 68 \text{ m}\Omega$ @ $V_{GS} = 4.5V$ $R_{DS(ON)} = 86 \text{ m}\Omega$ @ $V_{GS} = 2.5V$
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- HBM ESD protection level > 2kV (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain-Source Voltage		20	V
V _{GS}	Gate-Source Voltage		±12	V
1	Drain Current - Continuous	(Note 1a)	3.7	A
I _D	– Pulsed		6	
P _D	Power Dissipation for Single Operation	(Note 1a)	1.4	W
		(Note 1b)	0.7	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	86 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	173 (Single Operation)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	69 (Dual Operation)	C/VV
R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1d)	151 (Dual Operation)	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
028	FDMA1028NZ	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
	4	<u> </u>				
	acteristics	T., .,	1 00	1	1	T ,,
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		15		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V			1	μА
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
On Char	acteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	0.6	1.0	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 4.5 \text{ V}, I_{D} = 3.7 \text{ A}$		37	68	mΩ
	On–Resistance	$V_{GS} = 2.5 \text{ V}, I_{D} = 3.3 \text{ A}$		50	86	
		V_{GS} = 4.5 V, I_D = 3.7 A, T_J =125°C		53	90	
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 3.7 \text{ A}$		16		S
Dynamic	Characteristics					
C_{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		340		pF
Coss	Output Capacitance	f = 1.0 MHz		80		pF
C _{rss}	Reverse Transfer Capacitance]		60		pF
Rg	Gate Resistance				25	Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 10 \text{ V}, \qquad I_{D} = 1 \text{ A},$		8	16	ns
t _r	Turn-On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$		8	16	ns
$t_{\text{d(off)}}$	Turn-Off Delay Time			14	26	ns
t _f	Turn-Off Fall Time			3	6	ns
Q_g	Total Gate Charge	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 3.7 \text{ A},$		4	6	nC
	Gate-Source Charge	$V_{GS} = 4.5 V$		0.7		nC
Q_{gs}	Gate-Source Charge			0.7		

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Notes:

- 1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.
- user's board design.

 (a) $R_{\theta JA} = 86 \text{ °C/W}$ when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.
 - (b) $R_{\theta,IA} = 173$ °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
 - (c) $R_{\theta JA} = 69$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
 - (d) $\rm R_{\rm 0JA}$ = 151 $^{\rm o}C/\!W$ when mounted on a minimum pad of 2 oz copper. For dual operation.

a. 86 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 173 °C/W when mounted on a minimum pad of 2 oz copper

c. 69 °C/W when mounted on a 1 in² pad of 2 oz copper

d. 151 °C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics

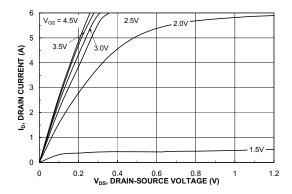
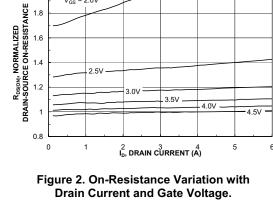



Figure 1. On-Region Characteristics.

 $V_{GS} = 2.0V$

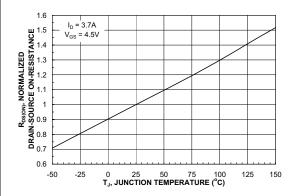


Figure 3. On-Resistance Variation with Temperature.

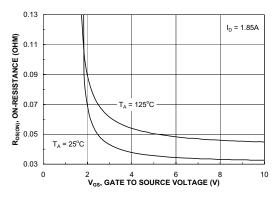


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

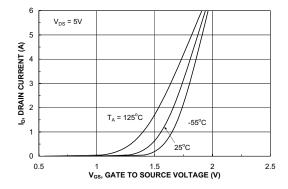


Figure 5. Transfer Characteristics.

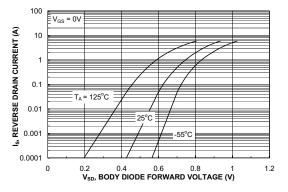
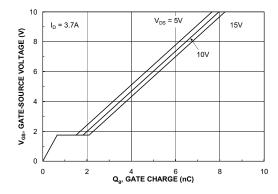



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

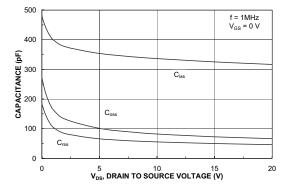



Figure 7. Gate Charge Characteristics.

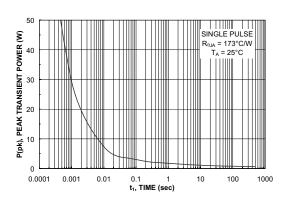
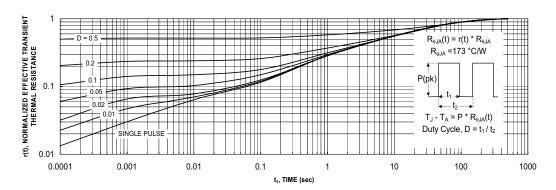
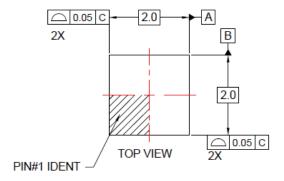
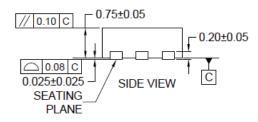
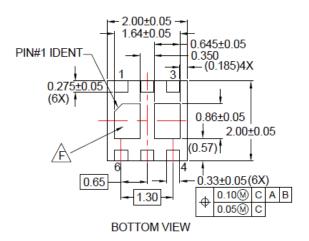
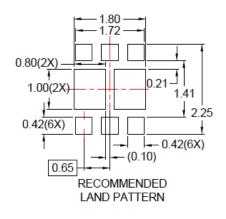


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.


Figure 11. Transient Thermal Response Curve.


Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

Dimensional Outline and Pad Layout

NOTES:

- A. CONFORM TO JADEC REGISTRATIONS MO-229, VARIATION VCCC, EXCEPT WHERE NOTED.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-UMLP16Erev4
- F. NON-JEDEC DUAL DAP

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_MLDEB-X06

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowerTM
AX-CAP[®]*
BitSiCTM
Build it NowTM
CorePLUSTM
CorePOWERTM

CorePLUSTM
CorePOWERTM
CROSSVOLTTM
CTLTM
Current Transfor L

Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficentMax™
ESBC™

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]
FAST[®]
FastvCore[™]

F-PFS™ FRFET®

Global Power ResourceSM GreenBridge[™]

Green FPS™ Green FPS™ e-Series™

Gmax[™] GTO[™] IntelliMAX[™] ISOPLANAR[™]

Marking Small Speakers Sound Louder

and BetterTM
MegaBuckTM
MICROCOUPLERTM
MicroFETTM
MicroPakTM
MicroPak²TM

MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™

Programmable Active $\mathsf{Droop}^{\mathsf{TM}}$

QFET®
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-8
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM ®*
GENERAL
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TiNYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*
µSerDes™

SerDes
UHC®
Ultra FRFETTM
UniFETTM
VCXTM
VisualMaxTM
VoltagePlusTM
XSTM

仙童™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FETBench™

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN. WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance with
 instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition		
		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

FDMA1028NZ FDMA1028NZ_F021