FAIROHILD

Absolute Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless othemise noted

Symbol	Parameter		Q1	Q2	Units
$V_{\text {DS }}$	Drain-Source Voltage		20	-20	V
$V_{G S}$	Gate-Source Voltage		± 12	± 12	V
ID	Drain Current - Continuous - Pulsed	(Note 1a)	3.7	-3.1	A
			6	-6	
$P_{\text {D }}$	Power Dissipation for Single Operation	(Note 1a)	1.4		W
		(Note 1b)			
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range		-55 to +150		${ }^{\circ} \mathrm{C}$

Thermal Characteristics

| $\mathrm{R}_{\theta J A}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 86 (Single Operation) |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{R}_{\theta J A}$ | Thermal Resistance, Junction-to-Ambient | (Note 1b) | 173 (Single Operation) |
| $\mathrm{R}_{\theta J A}$ | Thermal Resistance, Junction-to-Ambient | (Note 1c) | 69 (Dual Operation) |
| $\mathrm{R}_{\theta J A}$ | Thermal Resistance, Junction-to-Ambient | (Note 1d) | 151 (Dual Operation) |

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
032	FDMA1032CZ	$7^{\prime \prime}$	8 mm	3000 units

Electrical Characteristics		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted					
Symbol	Parameter	Test Conditions	Type	Min	Typ	Max	Units
Off Characteristics							
$\mathrm{BV}_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\begin{array}{ll} \hline V_{G S}=0 \mathrm{~V}, & I_{D}=250 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, & \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$	$\begin{gathered} 20 \\ -20 \end{gathered}$			V
$\frac{\Delta \mathrm{B} V_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} \hline 15 \\ -12 \end{gathered}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{l}_{\text {DSs }}$	Zero Gate Voltage Drain Current	$\begin{array}{ll} \hline V_{D S}=16 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DS}}=-16 \mathrm{~V}, & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \\ & \hline \end{aligned}$			$\begin{gathered} \hline 1 \\ -1 \end{gathered}$	$\mu \mathrm{A}$
$I_{\text {gss }}$	Gate-Body Leakage	$\mathrm{V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	All			± 10	$\mu \mathrm{A}$
On Characteristics (Note 2)							
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{G S}, & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, & \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$	$\begin{array}{c\|} \hline 0.6 \\ -0.6 \\ \hline \end{array}$	$\begin{gathered} \hline 1.0 \\ -1.0 \end{gathered}$	$\begin{gathered} 1.5 \\ -1.5 \end{gathered}$	V
$\begin{gathered} \Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})} \\ \Delta \mathrm{T}_{\mathrm{J}} \\ \hline \end{gathered}$	Gate Threshold Voltage Temperature Coefficient	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \text { Referenced to } 25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}, \text { Referenced to } 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} \hline-4 \\ 4 \\ \hline \end{gathered}$		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	Static Drain-Source On-Resistance	$\begin{array}{ll} \mathrm{V}_{G S}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=3.7 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=3.3 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=3.7 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{array}$	Q1		$\begin{aligned} & 37 \\ & 50 \\ & 53 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 86 \\ & 90 \\ & \hline \end{aligned}$	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-2.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	Q2		$\begin{aligned} & 60 \\ & 88 \\ & 87 \end{aligned}$	$\begin{gathered} \hline 95 \\ 141 \\ 140 \end{gathered}$	$\mathrm{m} \Omega$
$\overline{\mathrm{g} \text { FS }}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=3.7 \mathrm{~A}$ $\mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} 16 \\ -11 \\ \hline \end{gathered}$		S
Dynamic Characteristics							
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{aligned} & \text { Q1 } \\ & V_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz} \\ & \mathrm{Q}^{2} \\ & \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{array}{r} 340 \\ 540 \\ \hline \end{array}$		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance	$\begin{aligned} & \text { Q2 } \\ & V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} 80 \\ 120 \end{gathered}$		pF
$\overline{\mathrm{C}_{\text {rss }}}$	Reverse Transfer Capacitance		$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} 60 \\ 100 \\ \hline \end{gathered}$		pF
Switching Characteristics (Note 2)							
$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	Q1 $V_{D D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A},$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} \hline 8 \\ 13 \\ \hline \end{gathered}$	$\begin{array}{r} 16 \\ 24 \\ \hline \end{array}$	ns
t_{r}	Turn-On Rise Time	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} \hline 8 \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & 20 \\ & \hline \end{aligned}$	ns
$\overline{t_{\text {d(off) }}}$	Turn-Off Delay Time	$\begin{aligned} & \mathrm{Q} 2 \\ & \mathrm{~V}_{\mathrm{DD}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \\ & \hline \end{aligned}$		$\begin{aligned} & 14 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 59 \\ & \hline \end{aligned}$	ns
t_{f}	Turn-Off Fall Time		$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \\ & \hline \end{aligned}$		$\begin{gathered} \hline 3 \\ 36 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ 58 \\ \hline \end{gathered}$	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{Q} 1 \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.7 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \\ & \mathrm{Q} 2 \\ & \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3.1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 4 \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 6 \\ 10 \\ \hline \end{gathered}$	nC
Q_{gs}	Gate-Source Charge		$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \\ & \hline \end{aligned}$		$\begin{aligned} & 0.7 \\ & 1.1 \end{aligned}$		nC
$\overline{Q_{g d}}$	Gate-Drain Charge		$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{array}{r} \hline 1.1 \\ 2.4 \\ \hline \end{array}$		nC

Electrical Characteristics		$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted						
Symbol	Parameter	Test Condit		Type	Min	Typ	Max	Units
Drain-Source Diode Characteristics and Maximum Ratings								
I_{s}	Maximum Continuous Source-Drain Diode Forward Current			$\begin{aligned} & \hline \text { Q1 } \\ & \text { Q2 } \\ & \hline \end{aligned}$			$\begin{array}{\|r\|} \hline 1.1 \\ -1.1 \end{array}$	A
$\mathrm{V}_{\text {SD }}$	Source-Drain Diode Forward Voltage	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { (Note 2) } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \end{aligned}$		$\begin{gathered} \hline 0.7 \\ -0.8 \\ \hline \end{gathered}$	$\begin{gathered} 1.2 \\ -1.2 \end{gathered}$	V
t_{π}	Diode Reverse Recovery Time	$\begin{aligned} & \text { Q1 } \\ & \mathrm{I}_{\mathrm{F}}=3.7 \mathrm{~A}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{Q} 2 \\ & \mathrm{I}_{\mathrm{F}}=-3.1 \mathrm{~A}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		$\begin{aligned} & \text { Q1 } \\ & \text { Q2 } \\ & \hline \end{aligned}$		$\begin{aligned} & 11 \\ & 25 \end{aligned}$		ns
$\overline{\mathrm{Q}_{\text {r }}}$	Diode Reverse Recovery Charge			$\begin{aligned} & \text { Q1 } \\ & \hline \text { Q2 } \\ & \text { Q } \end{aligned}$		2 9		nC

Notes:

1. $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ oz. copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta J A}$ is determined by the user's board design.
(a) $R_{\theta J A}=86^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.062$ "thick PCB. For single operation.
(b) $R_{\theta J A}=173^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper. For single operation.
(c) $R_{\theta J A}=69^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.062$ " thick PCB. For dual operation
(d) $R_{\theta J A}=151^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.

2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0\%
3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics Q1 (N-Channel)

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1b.
Transient thermal response will change depending on the circuit board design.

Typical Characteristics: Q2 (P-Channel)

Figure 12. On-Region Characteristics.

Figure 14. On-Resistance Variation with Temperature.

Figure 16. Transfer Characteristics.

Figure 13. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 15. On-Resistance Variation with Gate-to-Source Voltage.

Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2 (P-Channel)

Figure 18. Gate Charge Characteristics.

Figure 20. Maximum Safe Operating Area.

Figure 19. Capacitance Characteristics.

Figure 21. Single Pulse Maximum Power Dissipation.

Figure 22. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c.
Transient thermal response will change depending on the circuit board design.

Dimensional Outline and Pad Layout

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/package/packageDetails.html?id=PN MLDEB-X06

DISCLAIMER

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used here in:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:

```
FDMA1032CZ
```

