FAIROHIL

FDMA3028N

Dual N-Channel PowerTrench ${ }^{\circledR}$ MOSFET
$30 \mathrm{~V}, 3.8 \mathrm{~A}, 68 \mathrm{~m} \Omega$

Features

■ Max. $\mathrm{R}_{\mathrm{DS}(\text { on })}=68 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.8 \mathrm{~A}$
■ Max. $\mathrm{R}_{\mathrm{DS}(\text { on })}=88 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.4 \mathrm{~A}$

- Max. $\mathrm{R}_{\mathrm{DS}(\text { on })}=123 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{GS}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.9 \mathrm{~A}$
- Low profile -0.8 mm maximum - in the new package MicroFET $2 \times 2 \mathrm{~mm}$
- RoHS Compliant

General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N -Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2×2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

MicroFET 2x2
MOSFET Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter		Ratings	Units
V_{DS}	Drain to Source Voltage		30	V
V_{GS}	Gate to Source Voltage		± 12	V
I_{D}	Drain Current -Continuous	(Note 1a)	3.8	A
	-Pulsed		16	
P_{D}	Power Dissipation	(Note 1a)	1.5	W
	Power Dissipation	(Note 1b)	0.7	
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range		-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

| R $_{\theta \text { JA }}$ | Thermal Resistance for Single Operation, Junction to Ambient | (Note 1a) | 86 |
| :---: | :--- | :---: | :---: | :---: |
| | Thermal Resistance for Single Operation, Junction to Ambient | (Note 1b) | 173 |
| | Thermal Resistance for Dual Operation, Junction to Ambient | (Note 1c) | 69 |
| | Thermal Resistance for Dual Operation, Junction to Ambient | (Note 1d) | 151 |
| | Thermal Resistance for Single Operation, Junction to Ambient | (Note 1e) | 160 |
| | Thermal Resistance for Dual Operation, Junction to Ambient | (Note 1f) | 133 |

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
328	FDMA3028N	MicroFET 2X2	$7^{\prime \prime}$	8 mm	3000 units

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
$\mathrm{BV}_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	30			V
$\frac{\Delta \mathrm{BV}_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		23		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
IDSS	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=24 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
IGSs	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			± 100	nA

On Characteristics

V_{GS} (th)	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.6	0.9	1.5	V
$\frac{\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})}}{} \frac{\Delta \mathrm{T}_{\mathrm{J}}}{}$	Gate to Source Threshold Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, referenced to $25^{\circ} \mathrm{C}$		-3		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
${ }^{\text {d }}$ (on)	Static Drain to Source On Resistance	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.8 \mathrm{~A}$		46	68	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.4 \mathrm{~A}$		56	88	
		$\mathrm{V}_{\mathrm{GS}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.9 \mathrm{~A}$		80	123	
		$\mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.8 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$		72	108	
g_{FS}	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.8 \mathrm{~A}$		15		S

Dynamic Characteristics

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		282	375	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			40	55	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			29	45	pF
R_{g}	Gate Resistance			2.4		Ω

Switching Characteristics

$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-On Delay	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.8 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	5.3	11	ns
t_{r}	Rise Time		3	10	ns
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay		15	27	ns
t_{f}	Fall Time		2.5	10	ns
$\mathrm{Q}_{\mathrm{g} \text { (TOT) }}$	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.8 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V} \end{aligned}$	3.7	5.2	nC
Q_{gs}	Gate to Source Charge		0.4		nC
Q_{gd}	Gate to Drain "Miller" Charge		1		nC

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1.3 \mathrm{~A} \quad$ (Note 2)		0.7	1.2	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=3.8 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$		12	22	ns
Q_{rr}	Reverse Recovery Charge			3.3	10	nC

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Notes:

1. $R_{\theta J A}$ is determined with the device mounted on a $1 \mathrm{in}^{2}$ oz. copper pad on a $1.5 \times 1.5 \mathrm{in}$. board of FR-4 material. $R_{\theta J C}$ is guaranteed by design while $R_{\theta J A}$ is determined by the user's board design
(a) $R_{\theta J A}=86^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5 " \times 1.5 " \times 0.062$ " thick PCB. For single operation.
(b) $R_{\theta J A}=173^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper. For single operation.
(c) $R_{\theta J A}=69^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 \mathrm{in}^{2}$ pad of 2 oz copper, $1.5 " \times 1.5^{\prime \prime} \times 0.062$ " thick PCB. For dual operation
(d) $R_{\theta J A}=151^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper. For dual operation.
(e) $R_{\theta J A}=160^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $30 \mathrm{~mm}^{2}$ pad of 2 oz copper. For single operation.
(f) $R_{\theta J A}=133^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $30 \mathrm{~mm}^{2}$ pad of 2 oz copper. For dual operation.

e. $160^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on $30 \mathrm{~mm}^{2}$ pad of 2 oz copper
2. Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0\%

Typical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. On Region Characteristics

Figure 3. Normalized On Resistance vs. Junction Temperature

Figure 5. Transfer Characteristics

Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure 9. Forward Bias Safe Operating Area

Figure 8. Capacitancevs. Drain to Source Voltage

Figure 10. SinglePulse Maximum Power Dissipation

Figure 11. Junction-to-Ambient Transient Thermal Response Curve

Dimensional Outline and Pad Layout

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/package/packageDetails.html?id=PN MLDEB-X06

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

NOTES:

A. CONFORM TO JADEC REGISTRATIONS MO-229, VARIATION VCCC, EXCEPT WHERE NOTED.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009
D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
E. DRAWING FILENAME: MKT-UMLP16Erev4
f. NON-JEDEC DUAL DAP

FAIRCHILD

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\left({ }^{(1)}\right.}$	C SYSTEM
AttitudeEngine ${ }^{\text {TM }}$	FRFET ${ }^{\circledR}$		\checkmark GENERAL
Awinda ${ }^{\text {® }}$	Global Power Resource ${ }^{\text {SM }}$	${ }^{(8)}$	TinyBoost ${ }^{\text {® }}$
AX-CAP ${ }^{\text {® }}$ *	GreenBridge ${ }^{\text {TM }}$	Power Supply WebDesigner ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {® }}$
BitSiC ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	TinyCalc ${ }^{\text {™ }}$
Build it Now $^{\text {™ }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	PowerXS ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Gmax ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TINYOPTOTM
CorePOWER ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyPower ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	IntellimAX ${ }^{\text {TM }}$	$\mathrm{QS}^{\text {™ }}$	TinyPWM ${ }^{\text {™ }}$
CTL ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	Making Small Speakers Sound Louder	RapidConfigure ${ }^{\text {TM }}$	TranSiC ${ }^{\text {™ }}$
DEUXPEED ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	(${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
Dual Cool ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$		TRUECURRENT ${ }^{\text {® }}$ *
EcoSPARK ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	μ SerDes $^{\text {TM }}$
EfficientMax ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	
ESBC ${ }^{\text {™ }}$	MicroPak ${ }^{\text {M }}$	SmartMax ${ }^{\text {TM }}$ SMART START ${ }^{\text {TM }}$	SerDes*
Γ^{\circledR}	MicroPak2 ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$ Solution for Your Success ${ }^{\text {TM }}$	UHC^{\circledR}
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	Solutions for Your Success ${ }^{\text {TM }}$ SPM ${ }^{\text {® }}$	Ultra FRFET ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	STEALTH ${ }^{\text {TM }}$	UniFET ${ }^{\text {m }}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionGrid ${ }^{\text {® }}$	SuperFET ${ }^{\text {® }}$	VCX ${ }^{\text {TM }}$
$\mathrm{FACT}^{\text {® }}$	MTi ${ }^{\text {® }}$	SuperSOT ${ }^{\text {mm-3 }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	MVN ${ }^{\text {M }}$	SuperSOT ${ }^{\text {TM }}$-6	VoltagePlus ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	mWSaver ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	Xsens ${ }^{\text {m }}$
FPS ${ }^{\text {™ }}$	OptoHiT ${ }^{\text {TM }}$	SupreMOS ${ }^{\text {S }}$ S ${ }^{\text {® }}$	仙童 ${ }^{\circledR}$
	OPTOLOGIC ${ }^{\circledR}$	Sync-Lock ${ }^{\text {TM }}$	

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:

```
FDMA3028N
```

