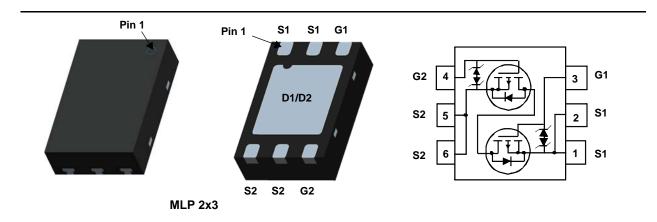


Dual Common Drain P-Channel PowerTrench[®] MOSFET -20 V, -7 A, 36 m Ω

Features

- Max $r_{S1S2(on)}$ = 36 m Ω at V_{GS} = -4.5 V, I_D = -5.7 A
- Max $r_{S1S2(on)}$ = 50 m Ω at V_{GS} = -2.5 V, I_D = -4.6 A
- Low Profile 0.8 mm maximum in the new package MicroFET 2x3 mm
- HBM ESD protection level 2.8 kV (Note 3)
- RoHS Compliant



General Description

This device is designed specifically as a single package solution for Li-Ion battery pack protection circuit and other ultra-portable applications. It features two common drain P-channel MOSFETs, which enables bidirectional current flow, on Fairchild's advanced PowerTrench[®] process with state of the art MircoFET Leadframe, the FDMB2308PZ minimizes both PCB space and $r_{S1S2(on)}$.

Application

Li-Ion Battery Pack

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{S1S2}	Source1 to Source2 Voltage			-20	V
V _{GS}	Gate to Source Voltage			±12	V
	Source1 to Source2 Current -Continuous	T _A = 25 °C	(Note 1a)	-7	^
IS1S2	-Pulsed			-30	Α
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.2	W
	Power Dissipation	T _A = 25 °C	(Note 1b)	0.8	vv
T _J , T _{STG}	Operating and Storage Junction Temperature I	Range		-55 to +150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	57	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	161	0/11

Package Marking and Ordering Information

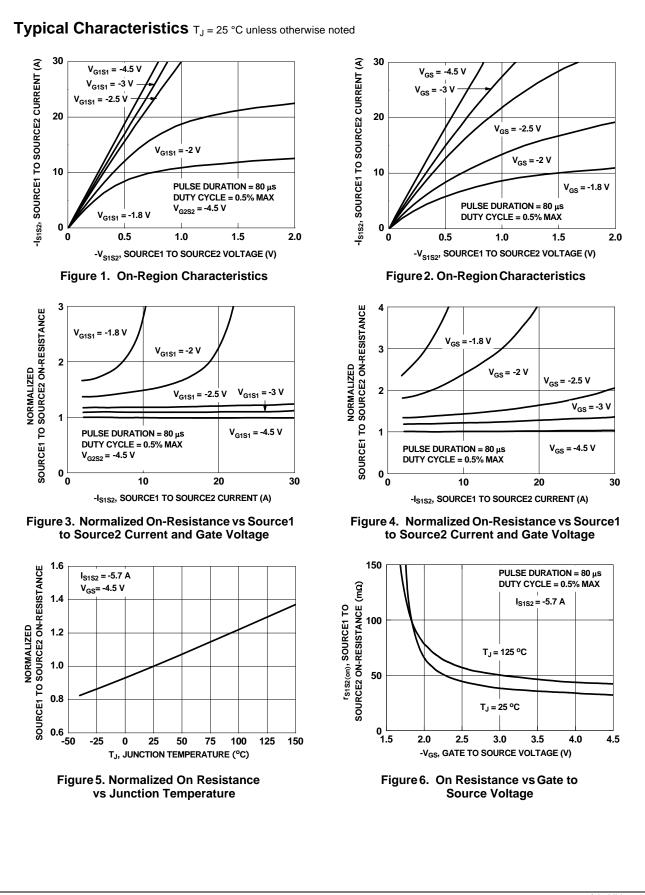
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
308	FDMB2308PZ	MLP 2x3	7"	8 mm	3000 units

FDMB2308PZ Dual Common Drain P-Channel PowerTrench® MOSFET
nmon Draii
n P-Chann
el PowerTr
ench [®] M
OSFET

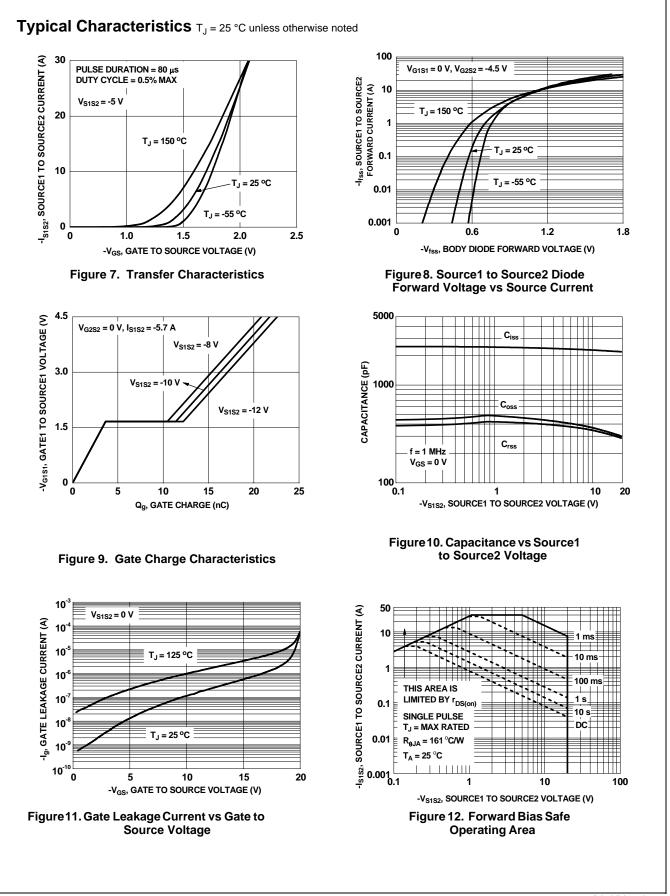
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
I _{S1S2}	Zero Gate Voltage Source1 to Source2 Current	$V_{S1S2} = -16 V, V_{GS} = 0 V$			-1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{S1S2} = 0 \text{ V}$			±10	μA	
On Chara	octeristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{S1S2}, I_{S1S2} = -250 \ \mu A$	-0.6	-0.9	-1.5	V	
r _{S1S2(on)}		$V_{GS} = -4.5 \text{ V}, \ I_{S1S2} = -5.7 \text{ A}$		27	36	1	
	Statia Source1 to Source2 On Resistance	V _{GS} = -2.5 V, I _{S1S2} = -4.6 A		36	50		
	Static Source1 to Source2 On Resistance	$V_{GS} = -4.5 \text{ V}, \ I_{S1S2} = -5.7 \text{ A},$ $T_J = 125 \ ^{\circ}\text{C}$		35	49	- mΩ	
9fs	Forward Transconductance	V _{S1S2} = -5 V, I _{S1S2} = -5.7 A		29		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			2280	3030	pF	
C _{oss}	Output Capacitance	V _{S1S2} = -10 V, V _{GS} = 0 V, f = 1 MHz		361	540	pF	
C _{rss}	Reverse Transfer Capacitance			339	510	pF	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			14	25	ns	
t _r	Rise Time	V_{S1S2} = -10 V, I_{S1S2} = -5.7 A V _{GS} = -4.5 V, R _{GEN} = 6 Ω		33	52	ns	
t _{d(off)}	Turn-Off Delay Time			74	118	ns	
t _f	Fall Time			58	93	ns	
Q _g	Total Gate Charge	V _{S1S2} = -10 V, I _{S1S2} = -5.7 A,		22	30	nC	
Q _{gs}	Gate1 to Source1 Charge	$V_{G1S1} = -4.5 V, V_{G2S2} = 0 V$		3.6		nC	
Q _{gd}	Gate1 to Source2 "Miller" Charge			7.7		nC	
Source1-	Source2 Diode Characteristics						
I _{fss}	Maximum Continuous Source1-Source2 Diode Forward Current				-5.7	А	
V _{fss}	Source1 to Source2 Diode Forward Voltage	$V_{G1S 1} = 0 V, V_{G2S2} = -4.5 V,$ $I_{fss} = -5.7 A$ (Note 2)		-1	-1.6	V	

a. 57 °C/W when mounted on a 1 in² pad of 2 oz copper

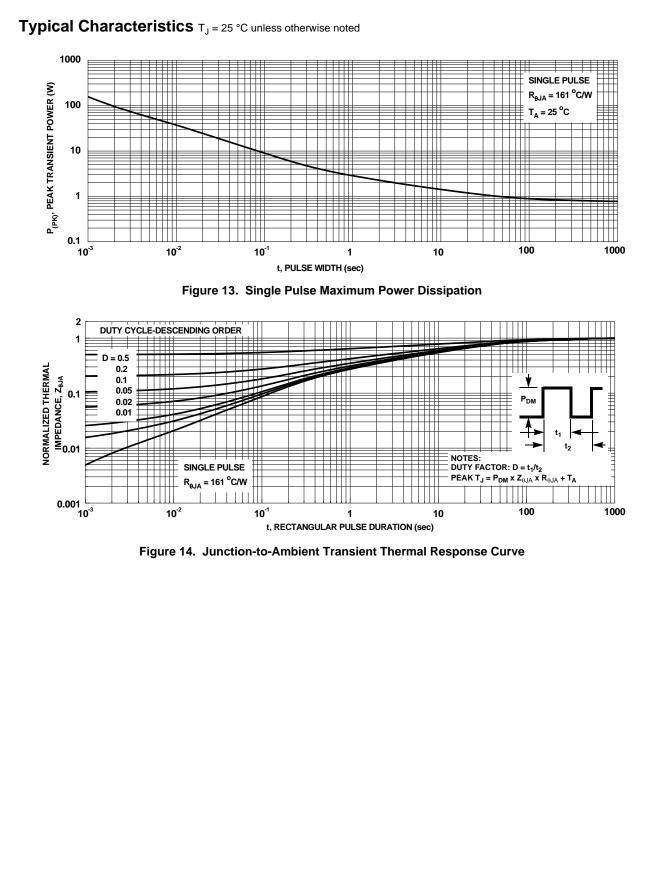
000

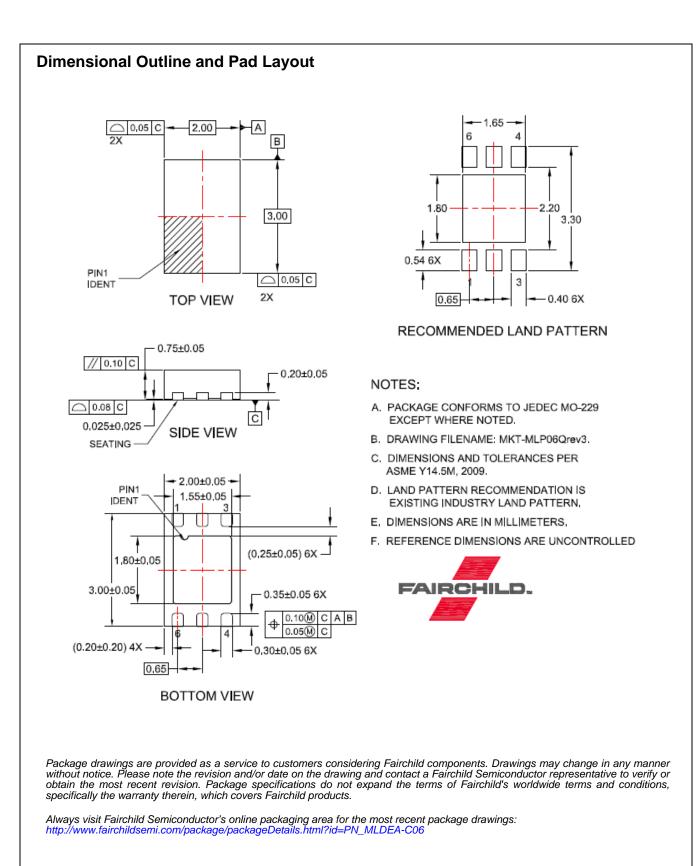

00000

b. 161 °C/W when mounted on


a minimum pad of 2 oz copper

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


©2013 Fairchild Semiconductor Corporation FDMB2308PZ Rev.C3

©2013 Fairchild Semiconductor Corporation FDMB2308PZ Rev.C3 FDMB2308PZ Dual Common Drain P-Channel PowerTrench[®] MOSFET

FDMB2308PZ Rev.C3

©2013 Fairchild Semiconductor Corporation FDMB2308PZ Rev.C3

DMB2308PZ Dual Common Drain P-Channel PowerTrench[®] MOSFET

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: