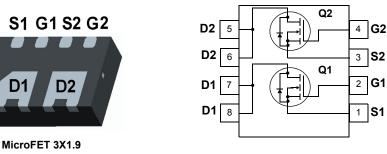


April 2014

FDMB3800N Dual N-Channel PowerTrench[®] MOSFET 30V, 4.8A, 40mΩ

Features


- Max $r_{DS(on)}$ = 40m Ω at V_{GS} = 10V, I_D = 4.8A
- Max $r_{DS(on)}$ = 51m Ω at V_{GS} = 4.5V, I_D = 4.3A
- Fast switching speed
- Low gate Charge
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability.
- RoHS Compliant

General Description

These N-Channel Logic Level MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter				Ratings	Units
V _{DS}	Drain to Source Voltage				30	V
V _{GS}	Gate to Source Voltage				±20	V
	Drain Current	-Continuous	T _A = 25°C	(Note 1a)	4.8	^
D	-Pulsed				9	— A
D	Power Dissipation		T _A = 25°C	Note 1a)	1.6	W
P _D	Power Dissipation $T_A = 25^{\circ}C$			(Note 1b)	0.75	V
T _J , T _{STG}	Operating and Storage Junction Temperature Range				-55 to +150	°C

Thermal Characteristics

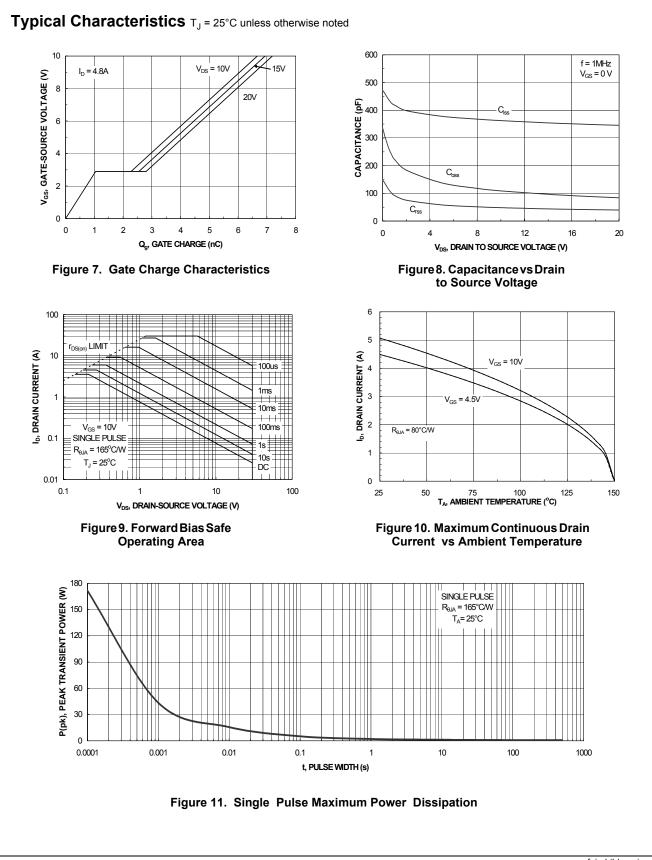
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	80	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	165	C/W

Package Marking and Ordering Information

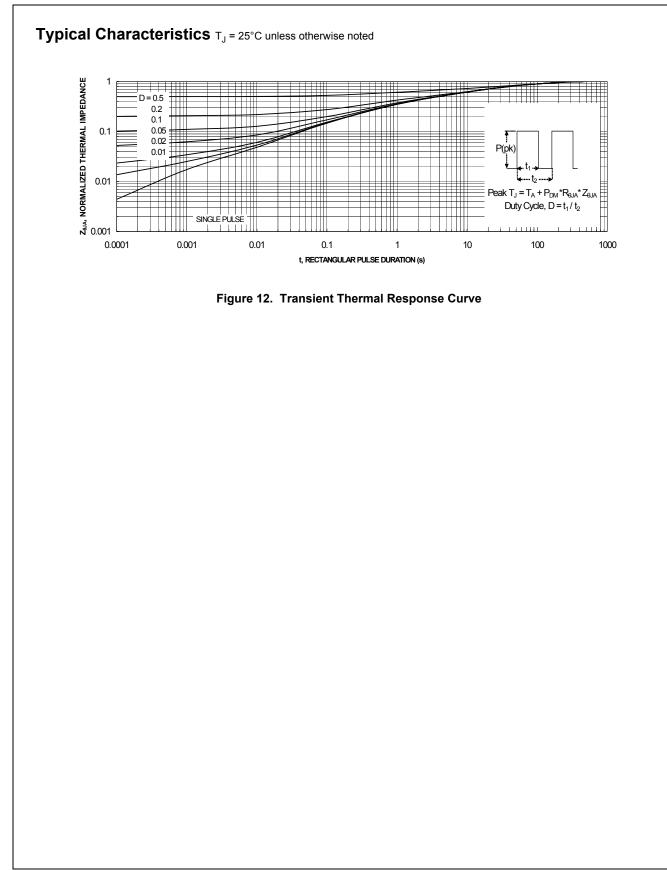
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
3800	FDMB3800N	MicroFET3X1.9	7"	8mm	3000 units

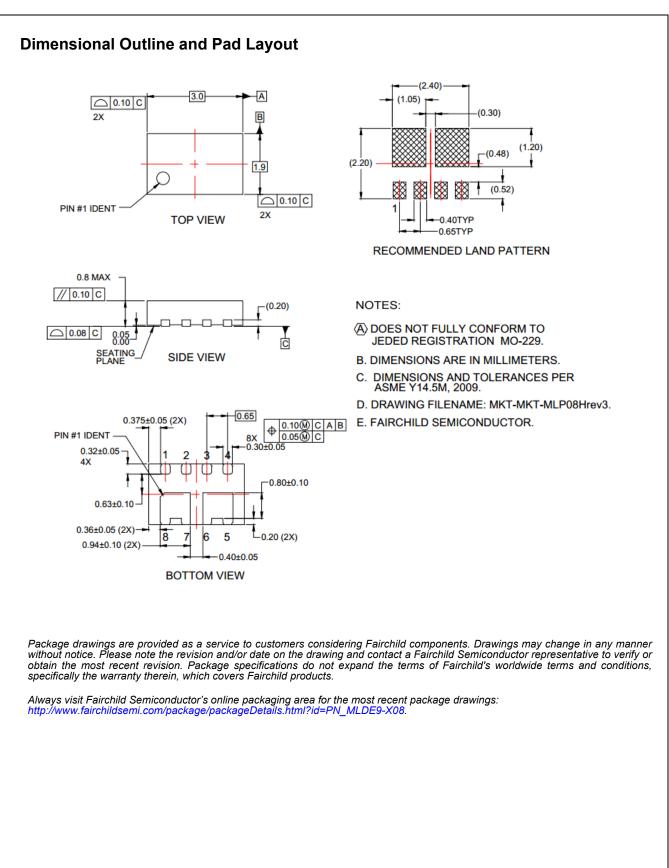
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30			V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		24		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V,$ $V_{GS} = 0V$ $T_{J} = 55^{\circ}C$			1 10	μA
GSS	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
	cteristics			-	1	1
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	1.9	3	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage		•	-	Ū	
ΔT_J	Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-4		mV/°C
r _{DS(on)} Drain		V _{GS} = 10V, I _D = 4.8A		32	40	
	Drain to Source On Resistance	V_{GS} = 4.5V, I_{D} = 4.3A		41	51	mΩ
		V _{GS} = 10V, I _D = 4.8A, T _J = 125°C		43	61	
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 4.8A$		14		S
Dvnamic	Characteristics					
C _{iss}	Input Capacitance			350	465	pF
C _{oss}	Output Capacitance	$-V_{\rm DS}$ =15V, $V_{\rm GS}$ = 0V,		90	120	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		40	60	pF
R _g	Gate Resistance	f = 1MHz		3		Ω
d(on)	Turn-On Delay Time	V _{DD} = 15V, I _D = 1A		8 5	16 10	ns ns
t _r	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		21	34	ns
t _{d(off)} t _f	Fall Time			2	10	ns
Q _{g(TOT)}	Total Gate Charge at 5V	$V_{00} = 0V t_0 5V v_1 - 45V$		4	5.6	nC
≪g(101)	Gate to Source Gate Charge	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 15V$ $I_D = 7.5A$		1.0	0.0	nC
0				1.0		110
				15		nC
Q _{gs} Q _{gd} Drain Sou	Gate to Drain "Miller" Charge			1.5		nC
Q _{gd} Drain-Sou	Gate to Drain "Miller" Charge			1.5	1.25	
Q _{gd} Drain-Sou	Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain - Source Diod	e Forward Current			1.25	A
Q _{gd} Drain-Sou I _S V _{SD}	Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain - Source Diode Source to Drain Diode Forward Voltage			0.8	1.25 1.2	AV
Q _{gd}	Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain - Source Diod	e Forward Current				A

2: Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.


Typical Characteristics T_J = 25°C unless otherwise noted 10 2.8 V_{GS} = 10V 4.5V 3.5V 6.0V 8 V_{GS} = 3.0V 6 3.0V 3.5V 4 4.0V 6.0V 45V2 2.5V 10V 0.8 0 2 8 10 0 0.25 0.5 0.75 1 1.25 0 4 6 V_{DS}, DRAIN-SOURCE VOLTAGE (V) ID, DRAIN CURRENT (A) Figure 1. On Region Characteristics Figure 2. Normalized On - Resistance vs Drain Current and Gate Voltage 0.102 1.6 I_D = 4.8A I_D = 2.4A (WHO) 0.092 NORMALIZED DRAIN-SOURCE ON-RESISTANCE 80 1 7 7 8 V_{GS} = 10V 0.082 0.082 0.072 0.062 T_. = 125°C DRAIN TO SOURCE 0.052 0.042 T_J = 25°C 0.032 0.6 0.022 -50 -25 0 25 50 75 100 125 150 7 2 3 4 5 6 8 9 10 T., JUNCTION TEMPERATURE (°C) V_{GS}, GATE TO SOURCE VOLTAGE (V) Figure 3. Normalized On - Resistance Figure 4. On-Resistance vs Gate to vs Junction Temperature Source Voltage 15 10 Т_J = -55°С ~ 25℃ $V_{DS} = 5V$ V_{GS} = 0V Is, REVERSE DRAIN CURRENT (A) . 125⁰C 1 T_I = 125°C 0.1 25°C 0.01 55°C 0.001 3 0.0001 0 0 0.2 0.4 0.6 0.8 1.2 1 1.5 2 2.5 3 3.5 4 V_{SD}, BODY DIODE FORWARD VOLTAGE (V) V_{GS}, GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics Figure 6. Source to Drain Diode Forward Voltage vs Source Current

è.


FDMB3800N Rev.C5


I_b, DRAIN CURRENT (A)

www.fairchildsemi.com

www.fairchildsemi.com

FDMB3800N Rev.C5

www.fairchildsemi.com

SYSTEM ®*

TRUECURRENT®*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Fairchild® MicroPak™ Solutions for Your Success™ Serbes* Fairchild® MicroPak2™ SPM® UHC® Fairchild Semiconductor® MillerDrive™ SteALTH™ UHC® FACT Quiet Series™ MotionMax™ SuperSOT™-3 Ultra FRFET FACT® OptoHiT™ SuperSOT™-6 VCX™ FastvCore™ OPTOLOGIC® SuperSOT™-8 VisualMax™ FETBench™ OPTOPLANAR® SupreMOS® VoltagePlus™ FPS™ Sync-Lock™ XS™ Max™	AX-CAP®* FRFET® U® Global Power ResourceSM PowerTrench® TinyBoost Bitlid it Now™ GreenBridge™ PowerXS™ PowerXS™ TinyBoost CorePLUS™ Green FPS™ Programmable Active Droop™ TinyBoost CorePOWER™ Green FPS™ PowerXS™ TinyCalc™ CorePOWER™ Green FPS™ QS™ TinyLogic® CTL™ Gmax™ QS™ TinyPower Current Transfer Logic™ IntelliMAX™ RapidConfigure™ TinyPower Dual Cool™ Marking Small Speakers Sound Louder O™ TanSiC™ TranSiC™ EfficentMax™ MegaBuck™ SignalWise™ SignalWise™ TranSiC™ ESBC™ MicroFET™ SMART START™ WSerDes™ WereDage™
---	--

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCI AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 168

Т

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: