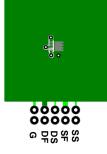


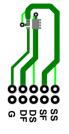
MLP 3.3x3.3

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			-150	V	
V _{GS}	Gate to Source Voltage			±25	V	
I _D	Drain Current -Continuous	T _C = 25 °C		-9		
	-Continuous	T _A = 25 °C	(Note 1a)	-2.7	Α	
	-Pulsed			-20		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	121	mJ	
P _D	Power Dissipation	T _C = 25 °C		40	w	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.3	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to + 150	°C	

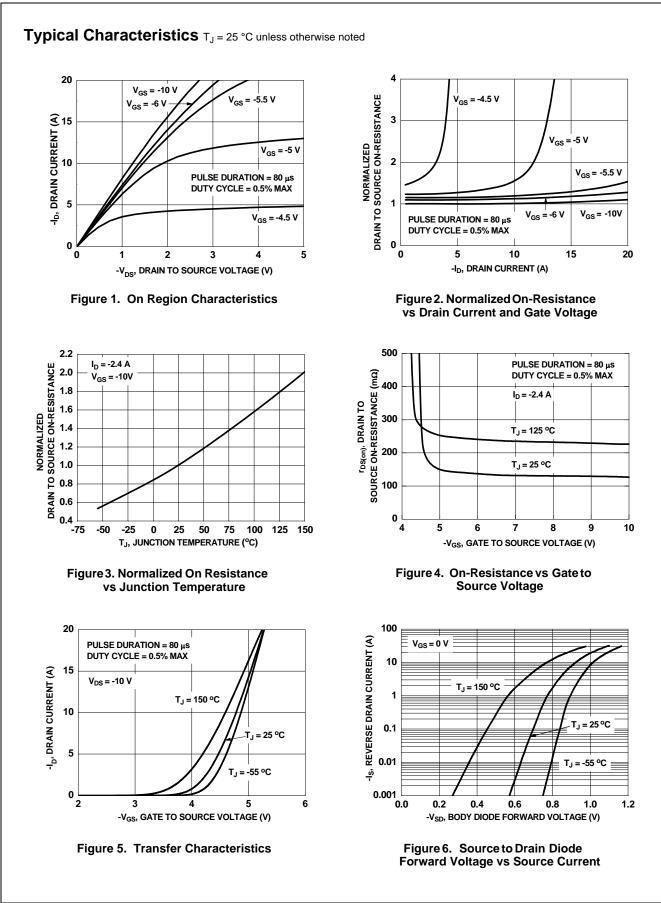

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	3.1	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (Note 1a) 53	C/W

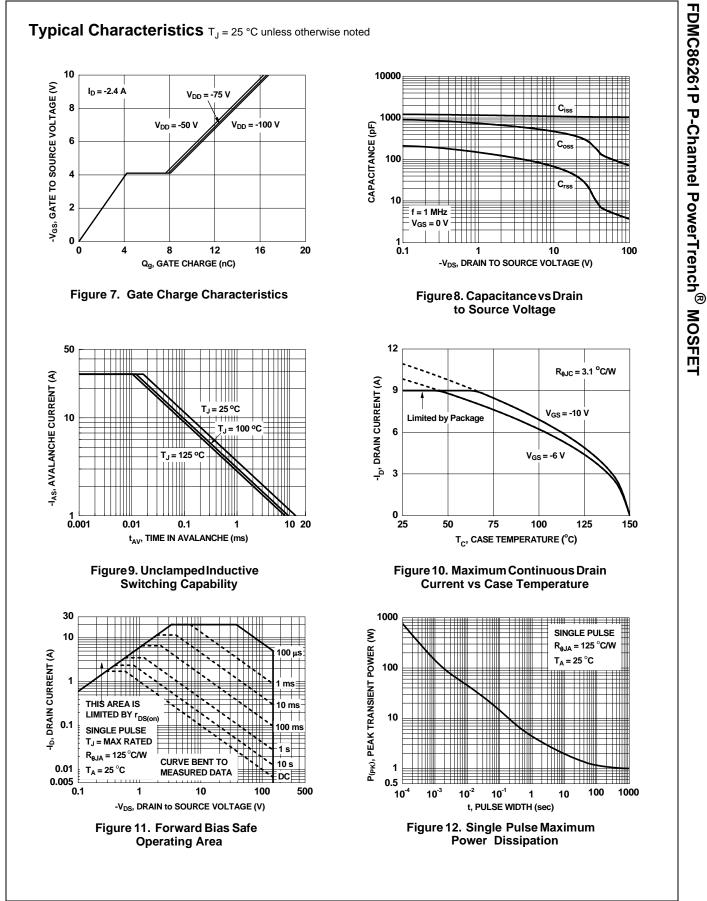
Package Marking and Ordering Information

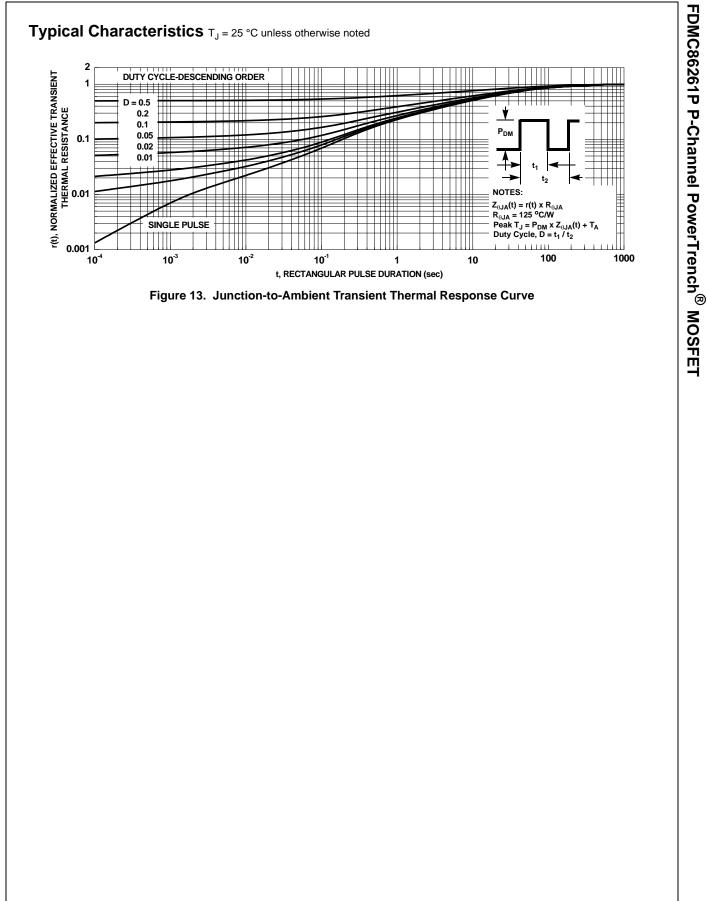

Device Marking	Device	Package	Reel Size	Tape Width	Quantity	
FDMC86261P	FDMC86261P	Power 33	13"	12 mm	3000 units	

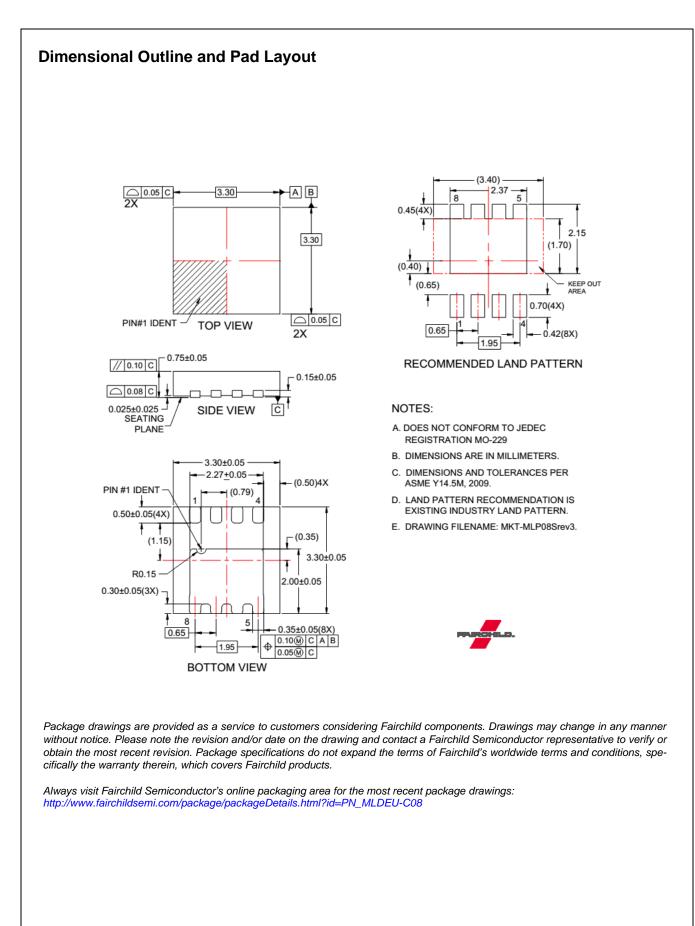
FDMC86261P P-Channel PowerTrench[®] MOSFET

0	al Characteristics $T_J = 25 \text{ °C}$ unle			.		11.11	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	icteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-150			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		-132		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -120 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			-1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-2	-3	-4	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		6		mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = -10 V, I _D = -2.4 A		130	160		
		$V_{GS} = -6 \text{ V}, \text{ I}_{D} = -2.2 \text{ A}$		141	185	mΩ	
		V _{GS} = -10 V, I _D = -2.4 A,T _J = 125 °C		218	269		
9 _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -2.4 \text{ A}$		9		S	
C _{iss} C _{oss}	Input Capacitance Output Capacitance	V _{DS} = -75 V, V _{GS} = 0 V, f = 1 MHz		1021 87	1360 120	pF pF	
C _{oss} C _{rss}	Reverse Transfer Capacitance			4.7	120	pF	
R _g	Gate Resistance		0.1	1.7	3.4	Ω	
Switching	g Characteristics			44			
t _{d(on)}	Turn-On Delay Time			11	20	ns	
t _r	Rise Time	$V_{DD} = -75 \text{ V}, \text{ I}_D = -2.4 \text{ A},$ $V_{GS} = -10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		2.4	10	ns	
t _{d(off)}	Turn-Off Delay Time Fall Time	$V_{GS} = -10 V$; $N_{GEN} = 0.22$		18 9.2	33 20	ns	
t _f	Total Gate Charge	$V_{\rm ext} = 0.00$ to -10.00		9.2 17	20	ns nC	
Q _{g(TOT)} Q _{g(TOT)}	Total Gate Charge	$\frac{V_{GS} = 0 \text{ V to -10 V}}{V_{GS} = 0 \text{ V to -6 V}} V_{DD} = -75 \text{ V},$ $I_D = -2.4 \text{ A}$		11	16	nC	
Q_{gs}	Total Gate Charge	$I_{\rm D} = -2.4 {\rm A}$		4.2	10	nC	
Q _{gd}	Gate to Drain "Miller" Charge			3.7		nC	
	urce Diode Characteristics						
		$V_{GS} = 0 V, I_{S} = -2.4 A$ (Note 2)		-0.81	-1.3	V	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.9 A$ (Note 2)		-0.80	-1.2	V	
				81	130	ns	
t _{rr}	Reverse Recovery Time	– I _F = -2.4 A, di/dt = 100 A/μs		01	150	113	


a) 53 °C/W when mounted on a 1 in² pad of 2 oz copper


b) 125 °C/W when mounted on a minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


3. Starting $T_J = 25$ °C; P-ch: L = 3 mH, $I_{AS} = -9$ A, $V_{DD} = -150$ V, $V_{GS} = -10$ V. 100% test at L = 0.1 mH, $I_{AS} = -28$ A.

©2013 Fairchild Semiconductor Corporation FDMC86261P Rev.C3

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDMC86261P