

December 2011

FDMQ8203

GreenBridgeTM Series of High-Efficiency Bridge Rectifiers Dual N-Channel and Dual P-Channel PowerTrench[®] MOSFET N-Channel: 100 V, 6 A, 110 m Ω P-Channel: -80 V, -6 A, 190 m Ω

Features

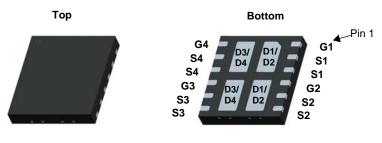
Q1/Q4: N-Channel

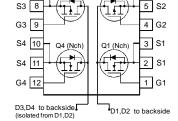
■ Max $r_{DS(on)}$ = 110 m Ω at V_{GS} = 10 V, I_D = 3 A

■ Max $r_{DS(on)}$ = 175 m Ω at V_{GS} = 6 V, I_D = 2.4 A

Q2/Q3: P-Channel

- Max $r_{DS(on)}$ = 190 m Ω at V_{GS} = -10 V, I_D = -2.3 A
- Max $r_{DS(qn)} = 235 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -2.1 \text{ A}$
- Substantial efficiency benefit in PD solutions
- RoHS Compliant




General Description

This quad mosfet solution provides ten-fold improvement in power dissipation over diode bridge.

Application

■ High-Efficiency Bridge Rectifiers

MLP 4.5x5

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter	Parameter			Q2/Q3	Units
V _{DS}	Drain to Source Voltage			100	-80	V
V_{GS}	Gate to Source Voltage			±20	±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C		6	-6	
	-Continuous (Silicon limited)	T _C = 25 °C		10	-10	Α
ID	-Continuous	T _A = 25 °C	(Note 1a)	3.4	-2.6	A
	-Pulsed			12	-10	
Б	Power Dissipation for Single Operation	T _C = 25 °C		22	37	W
P_{D}	Power Dissipation for Dual Operation $T_A = 25 ^{\circ}\text{C}$ (Note 1a)		2	.5	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	ge		-55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	160	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package Reel Size Tape Width		Tape Width	Quantity
FDMQ8203	FDMQ8203	MLP4.5x5	13 "	12 mm	3000 units

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Parameter	Test Conditions	Туре	Min	Тур	Max	Units
acteristics						
Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$ $I_D = -250 \mu A, V_{GS} = 0 V$	Q1/Q4 Q2/Q3	100 -80			V
Breakdown Voltage Temperature Coefficient	I_D = 250 μA, referenced to 25 °C I_D = -250 μA, referenced to 25 °C	Q1/Q4 Q2/Q3		72 -79		mV/°C
Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = -64 \text{ V}, V_{GS} = 0 \text{ V}$	Q1/Q4 Q2/Q3			1 -1	μ Α μ Α
Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	Q1/Q4 Q2/Q3			±100 ±100	nA nA
3	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Incteristics Drain to Source Breakdown Voltage $I_D = 250 \mu A, V_{GS} = 0 V$ $I_D = -250 \mu A, V_{GS} = 0 V$ Q1/Q4 Breakdown Voltage Temperature $I_D = 250 \mu A, V_{GS} = 0 V$ Q1/Q4 Coefficient $I_D = -250 \mu A, referenced to 25 °C$ Q1/Q4 Zero Gate Voltage Drain Current $V_{DS} = 80 V, V_{GS} = 0 V$ Q1/Q4 V _{DS} = -64 V, V _{GS} = 0 V Q2/Q3 Gate to Source Leakage Current $V_{CS} = +20 V, V_{CS} = 0 V$ Q1/Q4	Incteristics Drain to Source Breakdown Voltage $I_D = 250 \mu A$, $V_{GS} = 0 V$ $I_D = -250 \mu A$, $V_{GS} = 0 V$ $I_D = -250 \mu A$, referenced to 25 °C	Drain to Source Breakdown Voltage $I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}$ $Q1/Q4 = 100 \text{Q2/Q3}$ -80 Breakdown Voltage Temperature $I_D = 250 \mu\text{A}, V_{GS} = 0 \text{V}$ $Q1/Q4 = 72 \text{Q2/Q3}$ -80 Breakdown Voltage Temperature $I_D = 250 \mu\text{A}, \text{referenced to } 25 ^{\circ}\text{C}$ $Q1/Q4 = 72 \text{Q2/Q3}$ -79 Zero Gate Voltage Drain Current $V_{DS} = 80 \text{V}, V_{GS} = 0 \text{V}$ $Q1/Q4 \text{Q2/Q3}$ Gate to Source Leakage Current $V_{CS} = +20 \text{V}, V_{CS} = 0 \text{V}$ $Q1/Q4 \text{Q2/Q3}$	Drain to Source Breakdown Voltage $I_D = 250 \mu A, V_{GS} = 0 V$ $Q1/Q4 = 100 Q2/Q3 = -80$ Breakdown Voltage Temperature $I_D = 250 \mu A, V_{GS} = 0 V$ $Q1/Q4 = 72 Q2/Q3 = -80$ Zero Gate Voltage Drain Current $V_{DS} = 80 V, V_{GS} = 0 V$ $Q1/Q4 = 100 Q2/Q3 = -79$ Gate to Source Leakage Current $V_{DS} = -64 V, V_{GS} = 0 V$ $Q1/Q4 = -100 Q1/Q4 = -100 Q1/Q4 = -100 Q1/Q4 = -100 Q1/Q4$

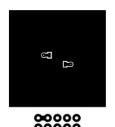
On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$ $V_{GS} = V_{DS}, I_D = -250 \mu A$	Q1/Q4 Q2/Q3	2 -1	3 -1.6	4 -3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25 °C $I_D = -250 \mu A$, referenced to 25 °C	Q1/Q4 Q2/Q3		-8 5		mV/°C
_	Drain to Source On Resistance	V _{GS} = 10 V, I _D = 3 A V _{GS} = 6 V, I _D = 2.4 A V _{GS} = 10 V, I _D = 3 A, T _J = 125 °C	Q1/Q4		85 118 147	110 175 191	 0
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = -10 \text{ V}, \ I_D = -2.3 \text{ A}$ $V_{GS} = -4.5 \text{ V}, \ I_D = -2.1 \text{ A}$ $V_{GS} = -10 \text{ V}, \ I_D = -2.3 \text{ A}, \ T_J = 125 \text{ °C}$	Q2/Q3		161 188 273	190 235 323	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 3 \text{ A}$ $V_{DS} = -10 \text{ V}, I_D = -2.3 \text{ A}$	Q1/Q4 Q2/Q3		6 6		S

Dynamic Characteristics

-						
C _{iss}	Input Capacitance	Q1/Q4: V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHZ	Q1/Q4 Q2/Q3	158 639	210 850	pF
C _{oss}	Output Capacitance	Q2/Q3:	Q1/Q4 Q2/Q3	41 46	55 65	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -40 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHZ}$	Q1/Q4 Q2/Q3	2.6 24	5 40	pF

Switching Characteristics


t _{d(on)}	Turn-On Delay Time	Q1/Q4:	Q1/Q4 Q2/Q3	3.8 4.7	10 10	ns
t _r	Rise Time	$V_{DD} = 50 \text{ V}, I_{D} = 3 \text{ A},$ $V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$	Q1/Q4 Q2/Q3	1.3 2.8	10 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2/Q3: V _{DD} = -40 V, I _D = -2.3 A,	Q1/Q4 Q2/Q3	7.5 22	15 35	ns
t _f	Fall Time	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$	Q1/Q4 Q2/Q3	1.9 2.7	10 10	ns
Qg	Total Gate Charge	VGS = 0 V to 10 V VGS = 0 V to -10 V Q1/Q4:	Q1/Q4 Q2/Q3	2.9 13	5 19	nC
Q _g	Total Gate Charge	VGS = 0 V to 5 V VGS = 0 V to -4.5 V VDD = 50 V,	Q1/Q4 Q2/Q3	1.6 6.4	3 10	nC
Q _{gs}	Gate to Source Gate Charge	Q2/Q3: V _{DD} = -40 V,	Q1/Q4 Q2/Q3	0.8 1.6		nC
Q_{gd}	Gate to Drain "Miller" Charge	$I_{D} = -2.3A$	Q1/Q4 Q2/Q3	0.8 2.6		nC

Electrical Characteristics $T_J = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-Sou	rce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 \text{ V, } I_S = 3 \text{ A}$ (Note 2) $V_{GS} = 0 \text{ V, } I_S = -2.3 \text{ A}$ (Note 2)			0.86 -0.82	1.3 -1.3	V
t _{rr}	Reverse Recovery Time	Q1/Q4: I _F = 3 A, di/dt = 100 A/μs	Q1/Q4 Q2/Q3		32 26	52 42	ns
Q _{rr}	Reverse Recovery Charge	Q2/Q3: I _F = -2.3 A, di/dt = 100 A/μs	Q1/Q4 Q2/Q3		21 26	34 42	nC

Notes:

13 R_{0,JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 50 °C/W when mounted on a 1 in 2 pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4.

b. 160 °C/W when mounted on a minimum pad of 2 oz copper, the board designed Q1+Q3 or Q2+Q4.

2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

Typical Characteristics (N-Channel) T_{.I} = 25 °C unless otherwise noted

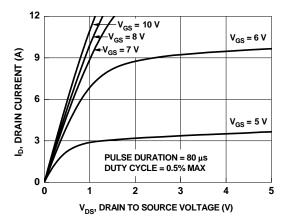
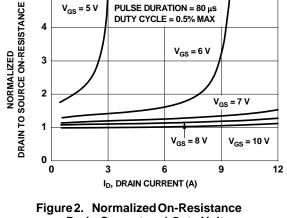



Figure 1. On Region Characteristics

vs Drain Current and Gate Voltage

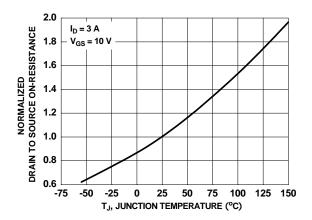


Figure 3. Normalized On Resistance vs Junction Temperature

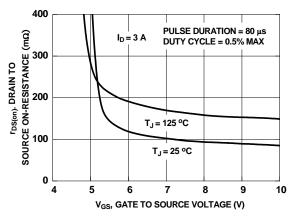


Figure 4. On-Resistance vs Gate to Source Voltage

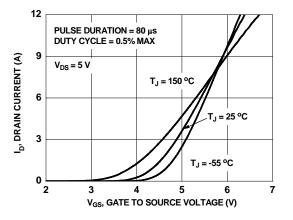


Figure 5. Transfer Characteristics

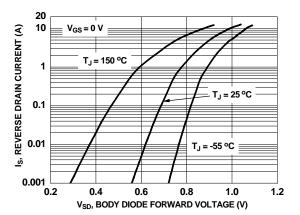


Figure 6. Source to Drain Diode **Forward Voltage vs Source Current**

Typical Characteristics (N-Channel) $T_J = 25$ °C unless otherwise noted

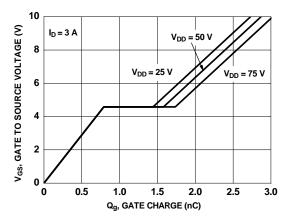


Figure 7. Gate Charge Characteristics

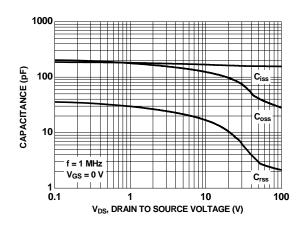


Figure 8. Capacitance vs Drain to Source Voltage

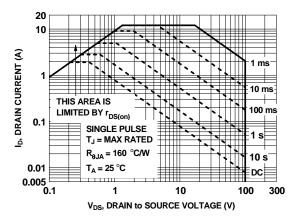
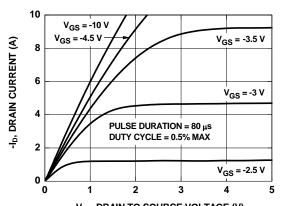



Figure 9. Forward Bias Safe Operating Area

Typical Characteristics (P-Channel) $T_J = 25$ °C unlenss otherwise noted

-V_{DS}, DRAIN TO SOURCE VOLTAGE (V) Figure 10. On-Region Characteristics

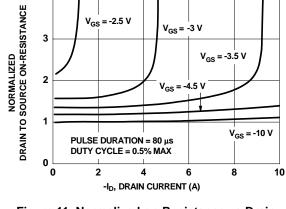


Figure 11. Normalized on-Resistance vs Drain Current and Gate Voltage

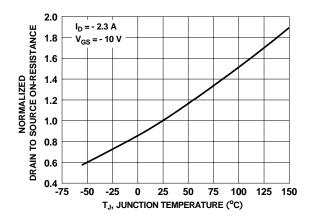


Figure 12. Normalized On-Resistance vs Junction Temperature

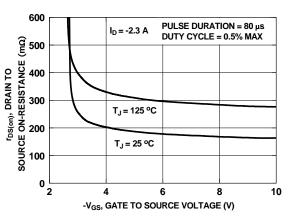


Figure 13. On-Resistance vs Gate to Source Voltage

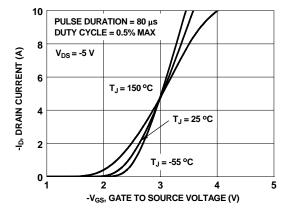


Figure 14. Transfer Characteristics

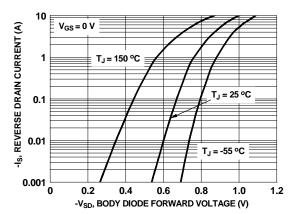


Figure 15. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics (P-Channel) $T_J = 25$ °C unlenss otherwise noted

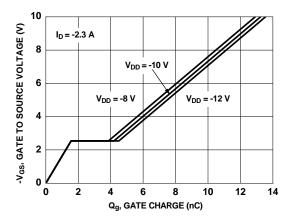


Figure 16. Gate Charge Characteristics

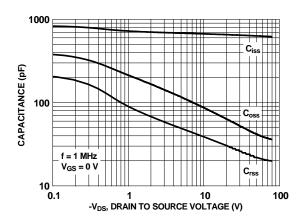


Figure 17. Capacitance vs Drain to Source Voltage

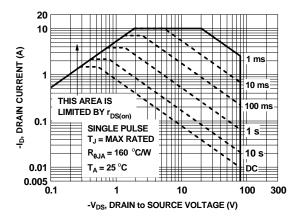


Figure 18. Forward Bias Safe Operating Area

Typical Characteristics $T_J = 25$ °C unlenss otherwise noted

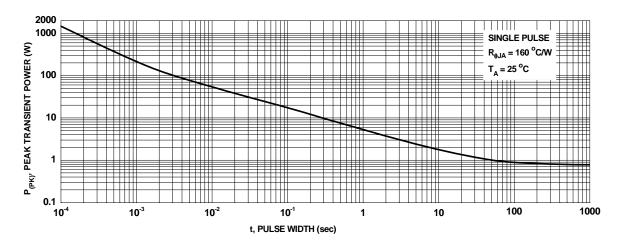


Figure 19. Single Pulse Maximum Power Dissipation

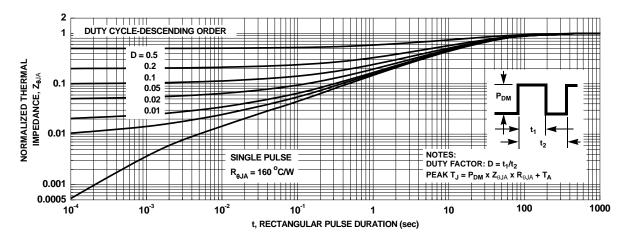
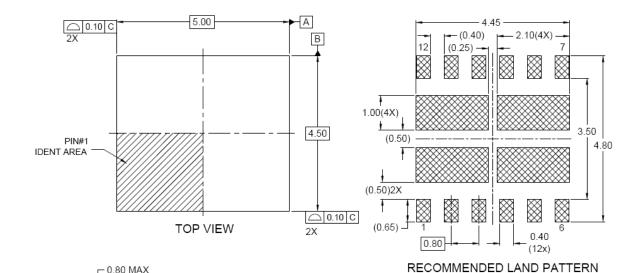
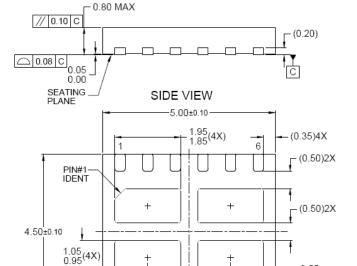




Figure 20. Junction-to-Ambient Transient Thermal Response Curve

Dimensional Outline and Pad Layout

0.80

BOTTOM VIEW

12

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC MO-229 REGISTRATION
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- LAND PATTERN RECOMMENDATION IS BASED ON FSC DESIGN ONLY.
- E. DRAWING FILENAME: MKT-MLP12Erev2.

0.55 0.45

Ф

0.35 0.25(12X)

0.10M C A B

0.05(M) C

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ **FPSTM** F-PFS™ AccuPower™ Auto-SPM™ FRFET®

AX-CAPTM* Global Power ResourceSM GreenBridge™ Green FPS™ BitSiC[®] Build it Now™ Green FPS™ e-Series™ CorePLUS™

CorePOWER™ $\mathsf{G} max^{\mathsf{TM}}$ GTO™ CROSSVOLTTM CTL™ IntelliMAX™ ISOPLANAR™ Current Transfer Logic™

DEUXPEED® Marking Small Speakers Sound Louder

Dual Cool™ and Better™ EcoSPARK® MegaBuck™ MICROCOUPLER™ EfficentMax™ ESBC™ MicroFET™ MicroPak™

MicroPak2™ Fairchild[®] MillerDrive™ MotionMax™ Fairchild Semiconductor® FACT Quiet Series™ mWSaver™ FACT[®] FAST® OptoHiT™ FastvCore™

Motion-SPM™ **OPTOLOGIC®** OPTOPLANAR® FETBench™ FlashWriter® *

R PowerTrench® PowerXS™

Programmable Active Droop™ QFE1

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3

SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM ® GENERAL

The Power Franchise®

wer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic[®]
TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* μSerDes™ μ

UHC® Ultra FRFET™ UniFET™ VCXTM VisualMax™ VoltagePlus™ XSTN

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FDMQ8203