

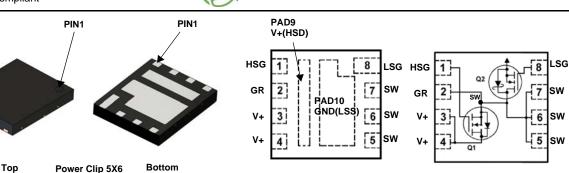
FDPC8014AS PowerTrench[®] Power Clip 25V Asymmetric Dual N-Channel MOSFET

Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 3.8 m Ω at V_{GS} = 10 V, I_D = 20 A
- Max $r_{DS(on)}$ = 4.7 m Ω at V_{GS} = 4.5 V, I_D = 18 A

Q2: N-Channel


- Max $r_{DS(on)}$ = 1.0 m Ω at V_{GS} = 10 V, I_D = 40 A
- Max $r_{DS(on)}$ = 1.2 m Ω at V_{GS} = 4.5 V, I_D = 37 A
- Low Inductance Packaging Shortens Rise/fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- RoHS Compliant

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load

Pin Name Description Description Pin Name Pin Name Description HSG High Side Gate 3,4,9 V+(HSD) High Side Drain 8 LSG Low Side Gate 1 GR Gate Return 5,6,7 SW Switching Node, Low Side Drain 10 GND(LSS) Low Side Source 2

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted.

Symbol	Parameter			Q1	Q2	Units
V _{DS}	Drain to Source Voltage			25 ^{Note5}	25	V
V _{GS}	Gate to Source Voltage			±12	±12	V
	Drain Current -Continuous	T _C = 25 °C	(Note 6)	59	159	
I _D	-Continuous	T _C = 100 °C	(Note 6)	37	100	۸
	-Continuous T _A			20 ^{Note1a}	40 ^{Note1b}	A
	-Pulsed		(Note 4)	266	1116	
E _{AS}	Single Pulse Avalanche Energy (Note 3)		(Note 3)	73	294	mJ
D	Power Dissipation for Single Operation $T_{C} = 2$		T _C = 25 °C	21	37	W
PD	Power Dissipation for Single Operation $T_A = 25 \text{ °C}$		2.1 ^{Note1a}	2.3 Note1b	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to	+150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case6.03.3			
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	60 ^{Note1a}	55 ^{Note1b}	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	130 ^{Note1c}	120 ^{Note1d}	

December 2015

MarkingDevice3014ASFDPC8014AS				Tape Width 12 mm			Quantity 3000 units		
		Fower Clip 56	Power Cip 56 13 12 mm				ii 3000 units		
al Chara	cteristics T _J = 25 °C	unless otherwise note	d.						
	Parameter	Test Conc	litions	Туре	Min.	Тур.	Max.	Units	
cteristics									
Drain to So	urce Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} =$		Q1	25			V	
	Voltage Temperature	$I_D = 1 \text{ mA}, V_{GS} = 0$ $I_D = 250 \mu\text{A}, \text{ reference}$		Q2 Q1	25	24		-	
Coefficient	vollage temperature	$I_D = 250 \mu$ A, referen		Q2		24 25		mV/°C	
Zero Gate	/oltage Drain Current	$V_{DS} = 20 V, V_{GS} =$		Q1			1	μA	
Gate to Sou	urce Leakage Current,	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} =$ $V_{GS} = 12 \text{ V}/-8 \text{ V}, \text{ V}_{S}$		Q2 Q1			500 ±100	μA nA	
Forward	aroo zoakago ourronk,	$V_{GS} = 12 \text{ V/-8 V}, V_{I}$		Q2			±100	nA	
cteristics									
Gate to Sou	urce Threshold Voltage	$V_{GS} = V_{DS}, I_D = 25$		Q1	0.8	1.3	2.5	V	
	urce Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1$ $I_D = 250 \ \mu\text{A}, \text{ reference}$		Q2 Q1	1.0	1.5 -4	3.0	· ·	
	e Coefficient	$I_D = 250 \ \mu$ A, referen		Q2		-4 -3		mV/°C	
		$V_{GS} = 10V, I_D = 20$		01		2.9	3.8		
Drain to Source On Resistance		$V_{GS} = 4.5 \text{ V}, I_D = 18$ $V_{GS} = 10 \text{ V}, I_D = 20$				3.6 3.9	4.7 5.3		
		$V_{GS} = 10V, I_D = 40$			0.75 1.0		mΩ		
			$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 37 \text{ A}$ Q2			0.9	1.2		
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 40$ $V_{DS} = 5 \text{ V}, \text{ I}_{D} = 20$		Q1		1.0 182	1.5		
Forward Tra	ansconductance	$V_{\rm DS} = 5 \text{V}, \ \text{I}_{\rm D} = 20 \text{V}_{\rm DS} = 5 \text{V}, \ \text{I}_{\rm D} = 40 \text{V}_{\rm DS} = 5 \text{V}$		Q2		296		S	
Character	istics								
Input Capad	citance	01:		Q1 Q2		1695	2375	pF	
put capa			Q1: V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ			6985	9780	P.	
Output Cap	acitance			Q1 Q2		495 2170	710 3040	pF	
Reverse Tr	ansfer Capacitance	— Q2: V _{DS} = 13 V, V _{GS} = 0	0 V, f = 1 MHZ	Q1		54	100	pF	
				Q2 Q1	0.1	172 0.4	245 1.2	P1	
Gate Resist	tance			Q2	0.1	0.4	1.2	Ω	
Characte	eristics								
Turn-On De				Q1		8	16	ns	
		Q1:		Q2		16	29		
Rise Time		V _{DD} = 13 V, I _D = 20	A, $R_{GEN} = 6 \Omega$	Q1 Q2		2 6	10 12	ns	
Turn-Off De	elay Time	Q2:		Q1	1	24	38	ns	
		V _{DD} = 13 V, I _D = 40	A, $R_{GEN} = 6 \Omega$	Q2 Q1		48	76 10		
Fall Time				Q2		5	10	ns	
Total Gate	Charge	$V_{GS} = 0 V$ to 10 V	01	Q1 Q2		25 97	35 135	nC	
Total Gate (Charge	$V_{GS} = 0 V \text{ to } 4.5 V$	Q1 V _{DD} = 13 V, I _D	Q1		11	16	nC	
			= 20 A Q2	Q2		44	62		
Gate to Sou	urce Gate Charge		$V_{DD} = 13 \text{ V}, \text{ I}_{D}$	Q1 Q2		3.4 14		nC	
Gate to Dra	in "Miller" Charge	_	= 40 A	Q1		2.2		nC	
				Q2		9			

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quanti
FDPC8014AS	FDPC8014AS	Power Clip 56	13 "	12 mm	3000 un

Electrical Charac

Dynamic Characteris

Symbol

BV_{DSS}

 ΔBV_{DSS}

 ΔT_{J}

IDSS

 I_{GSS}

V_{GS(th)} $\Delta V_{GS(th)}$

 ΔT_{J}

r_{DS(on)}

gfs

t_{d(on)}

t_{d(off)}

t_r

t_f

 Q_g

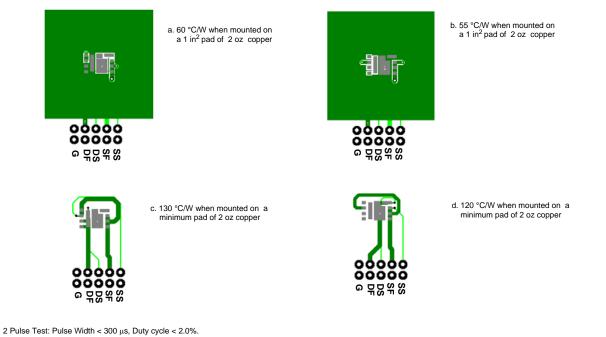
 Q_g

 Q_{gs}

 Q_{gd}

Off Characteristics

On Characteristics

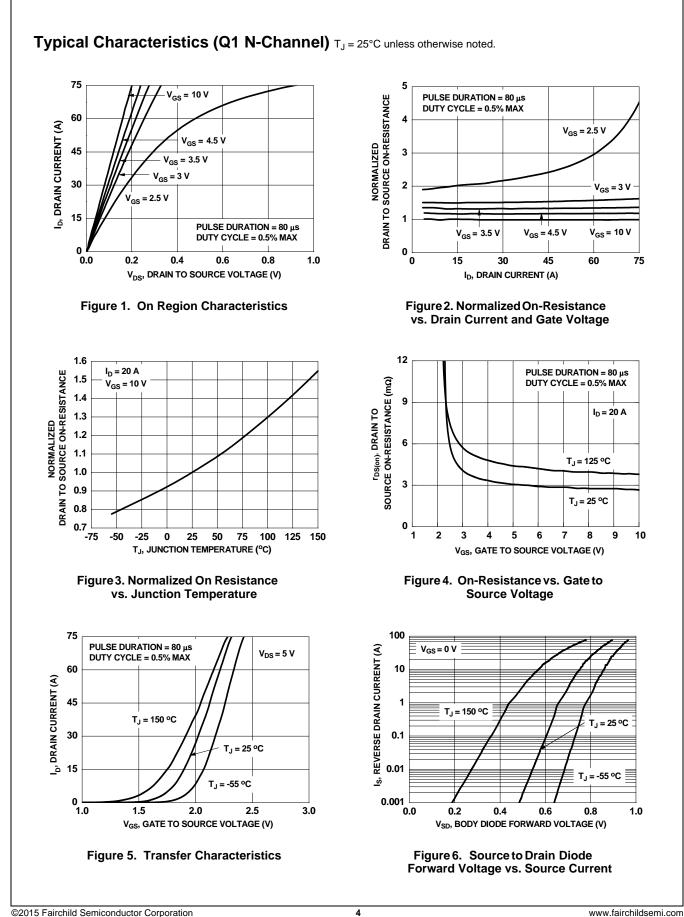

C _{iss}	Input Capacitance	Q1:	Q1 Q2		1695 6985	2375 9780	pF
C _{oss}	Output Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ Q2:	Q1 Q2		495 2170	710 3040	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		54 172	100 245	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	0.4 0.4	1.2 1.2	Ω

Switching Character

Symbol	Parameter	Test Conditions	Туре	Min.	Тур.	Max.	Units
Drain-Soເ	urce Diode Characteristics						
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 20 A$ (Note 2) $V_{GS} = 0 V, I_S = 40 A$ (Note 2)	Q1		0.8	1.2	V
VSD Cource to	Bource to Brain Blode i orward Voltage	$V_{GS} = 0 V, I_S = 40 A$ (Note 2)	Q2		0.8	1.2	v
	Diode continuous forward current		Q1		59		А
IS	Didde continuous forward current	T 25 %C	Q2		159		A
	Dia da avula a sumant	T _C = 25 °C	Q1		266		•
S,Pulse	Diode pulse current		Q2		1116		A
		Q1	Q1		25	40	
۲ _{rr}	Reverse Recovery Time	I _F = 20 A, di/dt = 100 A/μs	Q2		44	70	ns
<u>^</u>	Deverse Desevery Charge	Q2	Q1		10	20	~0
Q _{rr}	Reverse Recovery Charge	I _F = 40 A, di/dt = 300 A/μs	Q2		78	125	nC

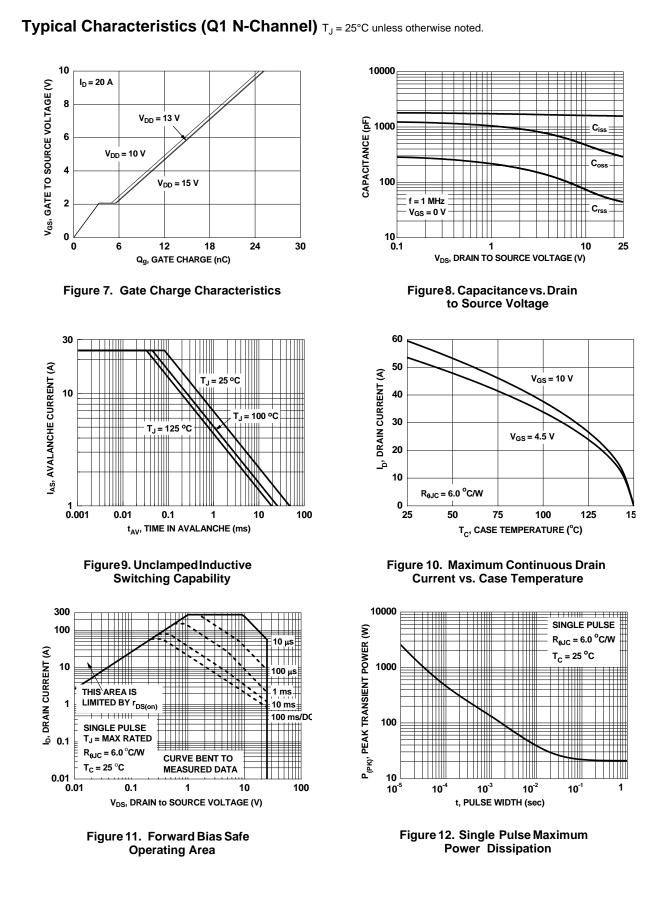
Notes:

1. R_{BJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{BJC} is guaranteed by design while R_{BCA} is determined by the user's board design.

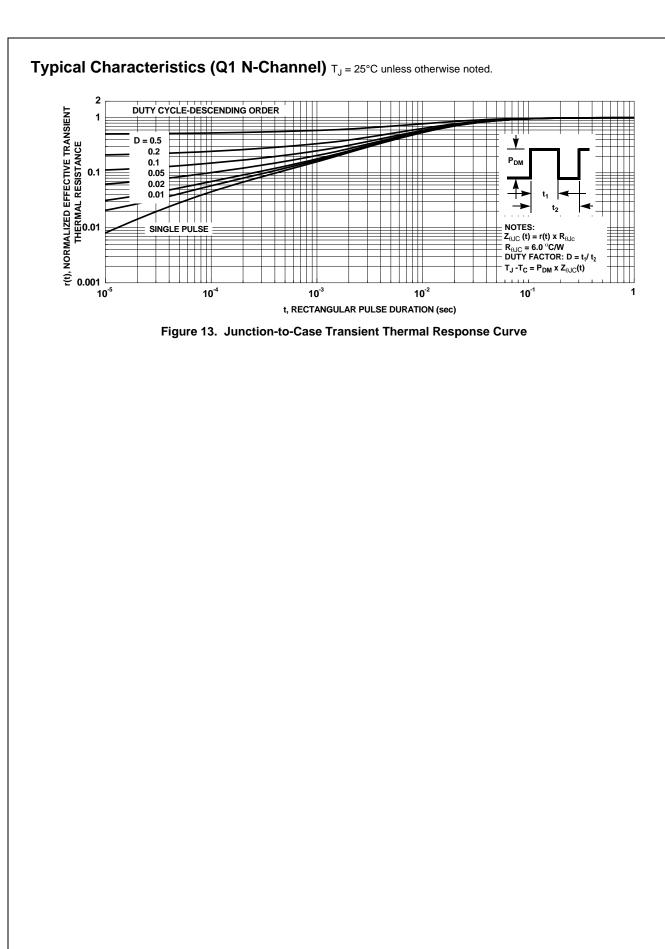

3. Q1 : E_{AS} of 73 mJ is based on starting T_J = 25 $^{\circ}$ C; N-ch: L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 24 A.

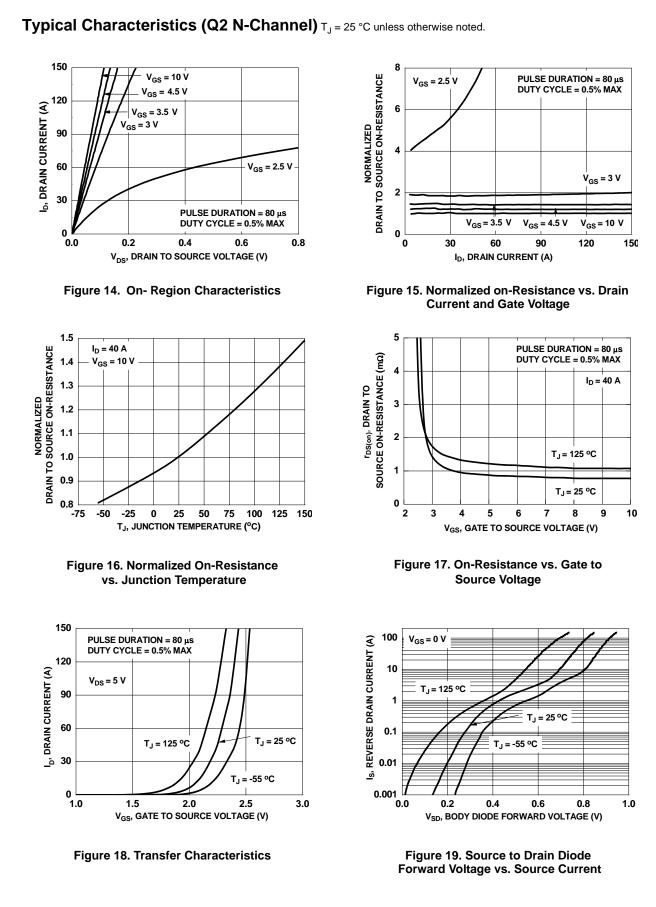
Q2: E_{AS} of 294 mJ is based on starting T_J = 25 0 C; N-ch: L = 3 mH, I_{AS} = 14 A, V_{DD} = 25 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 46 A.

4. Pulsed Id please refer to Fig 11 and Fig 24 SOA graph for more details.

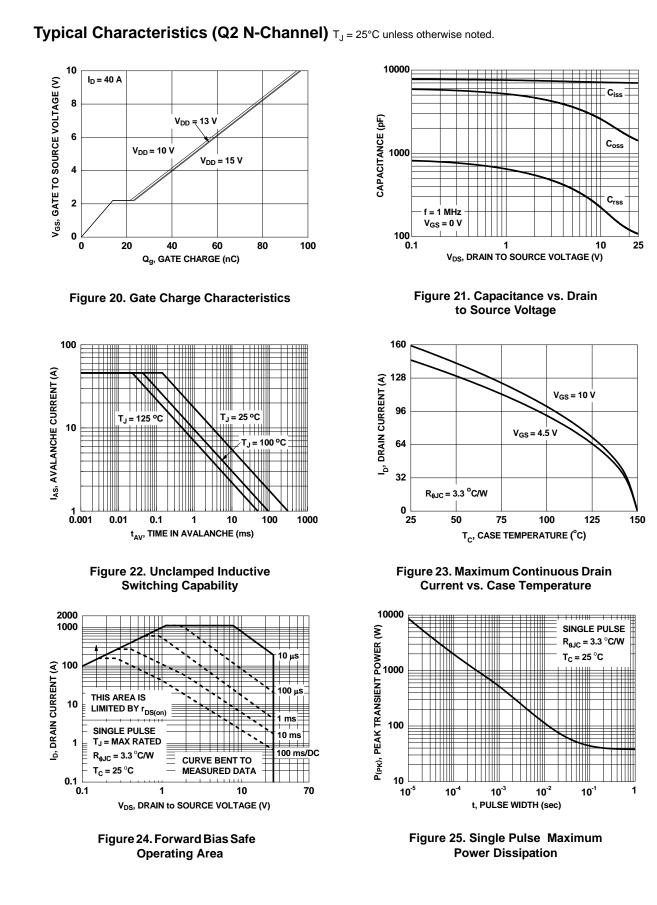

5. The continuous V_{DS} rating is 25 V; However, a pulse of 30 V peak voltage for no longer than 100 ns duration at 600 KHz frequency can be applied.

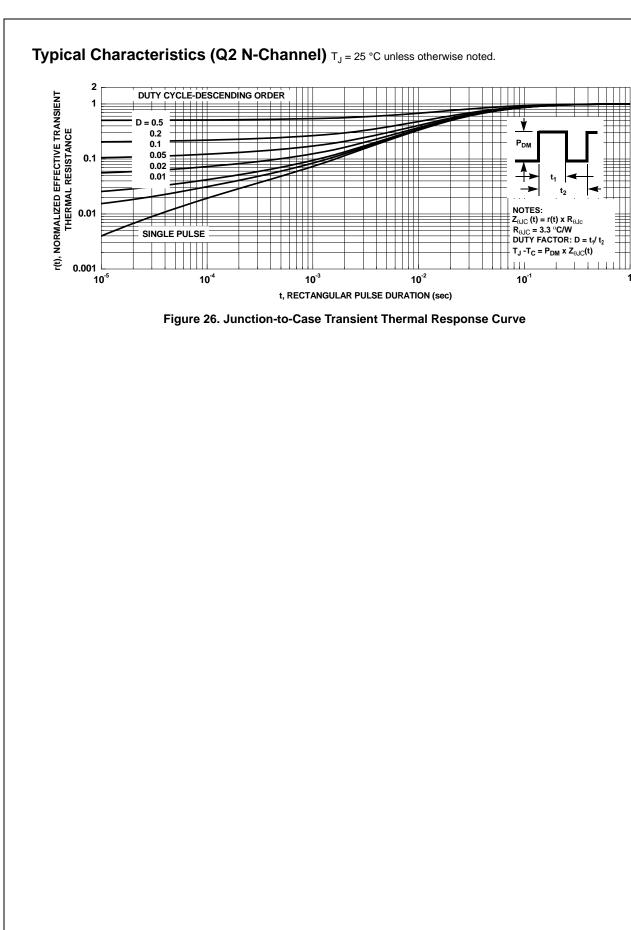
6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.




©2015 Fairchild Semiconductor Corporation FDPC8014AS Rev.1.0

FDPC8014AS PowerTrench[®] Power Clip





©2015 Fairchild Semiconductor Corporation FDPC8014AS Rev.1.0

FDPC8014AS PowerTrench[®] Power Clip

Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverses recovery characteristic of the FDPC8014AS.

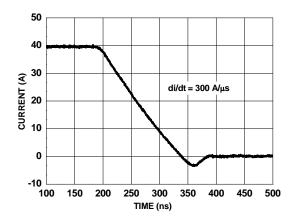


Figure 27. FDPC8014AS SyncFET[™] Body Diode Reverse Recovery Characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

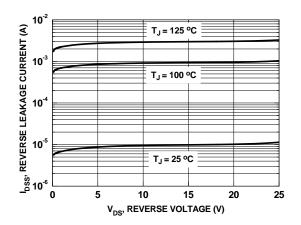
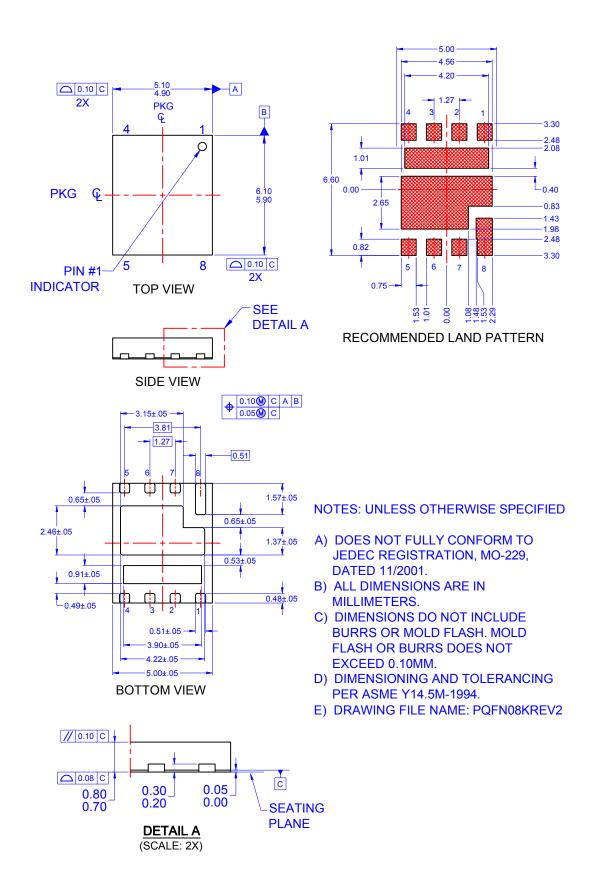
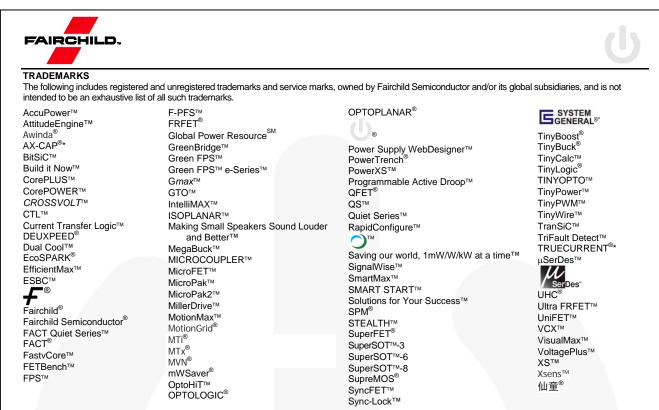




Figure 28. SyncFET[™] Body Diode Reverse Leakage vs. Drain-source Voltage

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDPC8014AS</u>