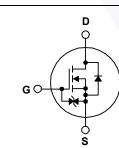


FDPF3N50NZ N-Channel UniFETTM II MOSFET 500 V, 3 A, 2.5 Ω


Features

- $R_{DS(on)} = 2.1 \Omega (Typ.) @ V_{GS} = 10 V, I_D = 1.5 A$
- Low Gate Charge (Typ. 6.2 nC)
- Low C_{rss} (Typ. 2.5 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- · ESD Improved Capability
- RoHS Compliant

Applications

- LCD/LED TV
- Uninterruptible Power Supply
- Lighting
- AC-DC Power Supply

Description

lasts.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Parameter			FDPF3N50NZ	Unit	
Drain to Source Voltage			500	V	
Gate to Source Voltage			±25	V	
Desia Current	- Continuous ($T_C = 25^{\circ}C$)		3*		
Drain Current	- Continuous (T _C = 100 ^o C)	1.8*	— A	
Drain Current	- Pulsed	(Note 1)	12*	A	
Single Pulsed Avalanche Energy		(Note 2)	113	mJ	
Avalanche Current		(Note 1)	3	Α	
Repetitive Avalanche Energy		(Note 1)	5.4	mJ	
Peak Diode Recovery dv/dt		(Note 3)	10	V/ns	
Deven Dia dia atian	(T _C = 25 ^o C)		27	W	
Power Dissipation	- Derate above 25ºC		0.21	W/ºC	
Operating and Storage Temperature Range			-55 to +150	°C	
Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	
	Gate to Source Voltage Drain Current Drain Current Single Pulsed Avalanch Avalanche Current Repetitive Avalanche En Peak Diode Recovery de Power Dissipation Operating and Storage Maximum Lead Temper	$\begin{tabular}{ c c c c } \hline Drain to Source Voltage & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c } \hline \end{tabular} & \begin{tabular}{ c c c c } \hline \end{tabular} \\ \hline tab$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Thermal Characteristics

Symbol	Parameter	FDPF3N50NZ	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	4.6	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/vv

October 2013

UniFETTM II MOSFET is Fairchild Semiconductor's high voltage

MOSFET family based on advanced planar stripe and DMOS

technology. This advanced MOSFET family has the smallest

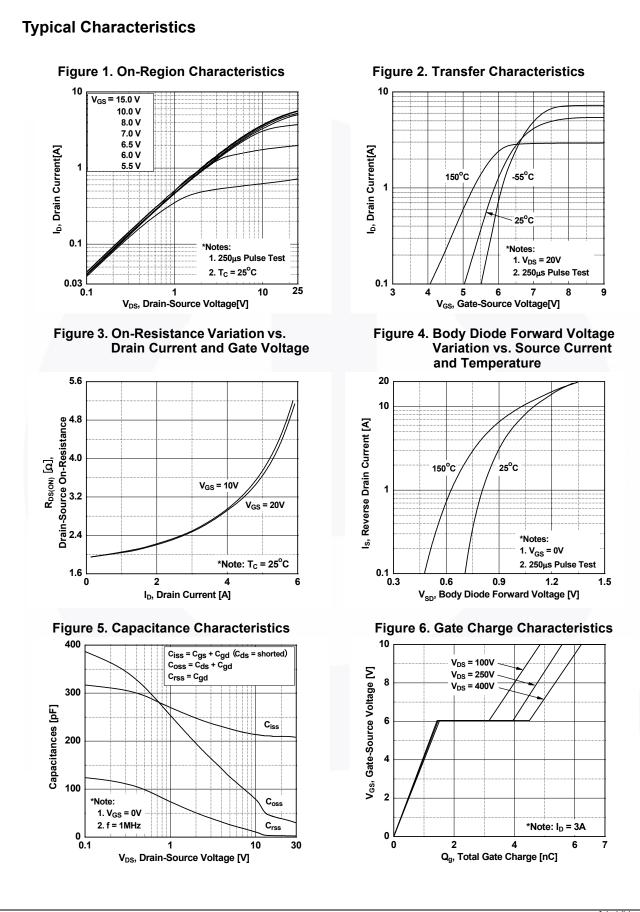
on-state resistance among the planar MOSFET, and also pro-

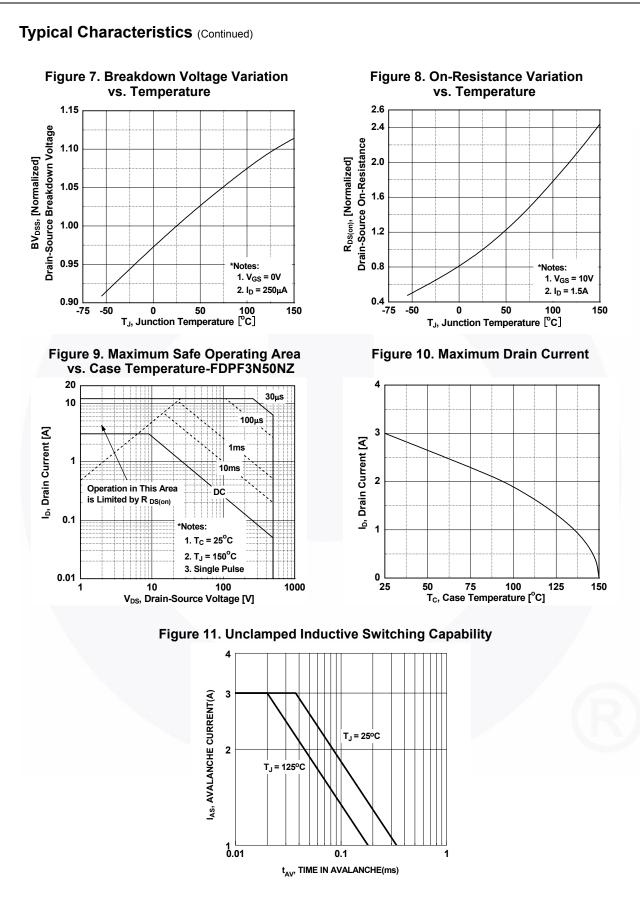
vides superior switching performance and higher avalanche

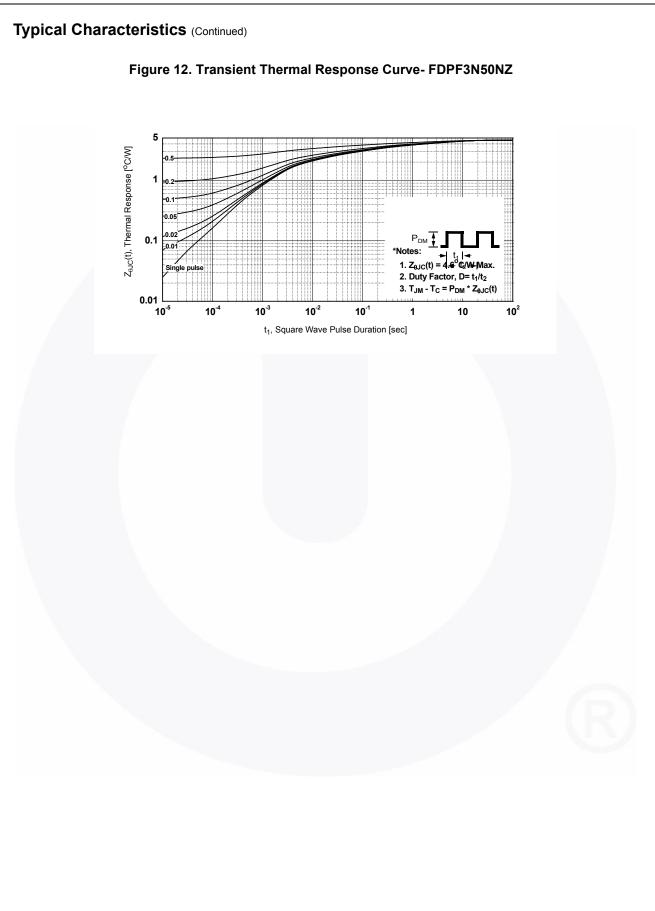
energy strength. In addition, internal gate-source ESD diode allows UniFET II MOSFET to withstand over 2kV HBM surge

stress. This device family is suitable for switching power con-

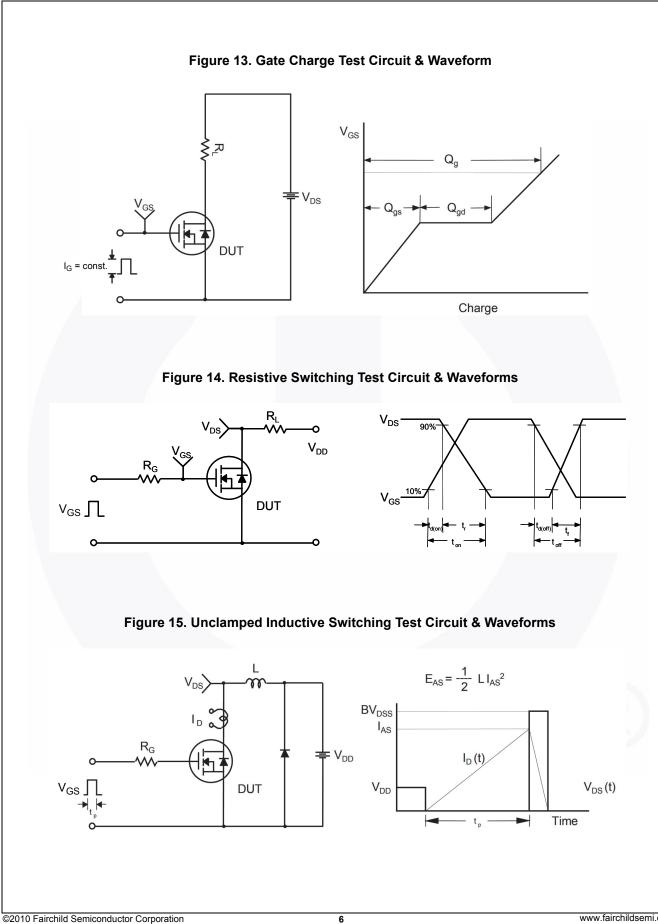
verter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp bal-

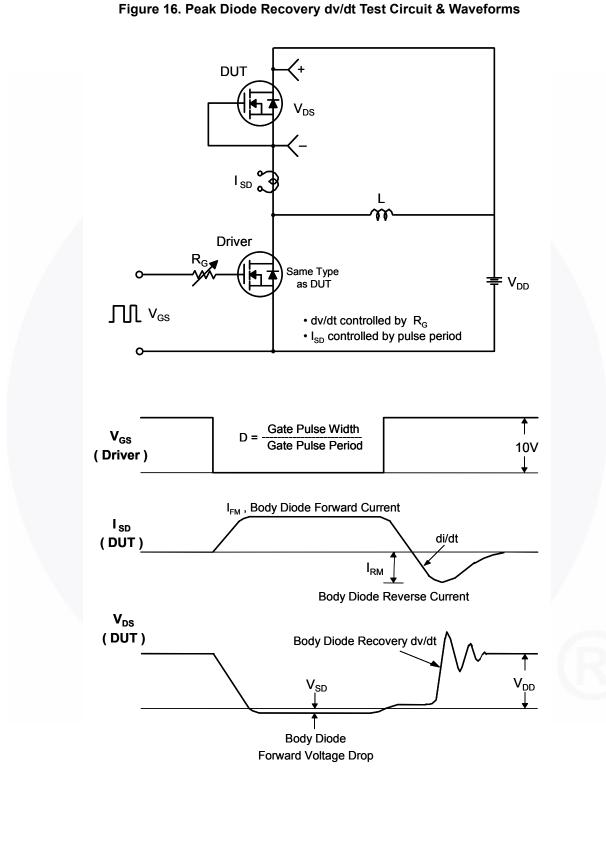


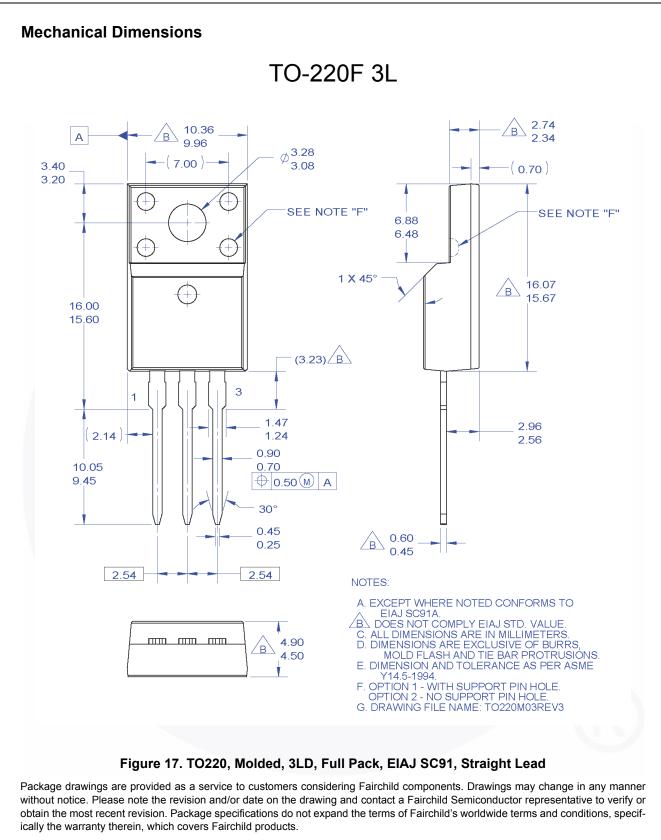

_		Pack	age	Reel Size	Тар	e Width		Quantit	y	
		TO-22				N/A		50 units		
Electrica	al Char	acteristics T _c =	25°C unles	s otherwis	se noted					
Symbol		Parameter			Test Condition	ns	Min.	Тур.	Max.	Unit
Off Chara	cteristic	s								
BV _{DSS}		Source Breakdown V	oltage	lp = 25	$50\mu A V_{CC} = 0V T$	$c = 25^{\circ}C$	500	_	-	V
∆BV _{DSS}	Breakdown Voltage Temperature Coefficient		0	I _D = 250μA, V _{GS} = 0V, T _C = 25 ^o C		500		_		
$/\Delta T_J$				I _D = 25	60μA, Referenced	to 25°C	-	0.5	-	V/°C
		ate Voltage Drain Current		$V_{DS} = 500V, V_{GS} = 0V$ $V_{DS} = 400V, V_{GS} = 0V, T_{C} = 125^{\circ}C$		-	-	1		
						-	-	10	μΑ	
I _{GSS}	Gate to Body Leakage Current		ıt	V _{GS} =	±25V, V _{DS} = 0V		-	-	±10	μA
On Charad	cteristic	s								
V _{GS(th)}	Gate TI	nreshold Voltage		V _{GS} =	V _{DS} , I _D = 250μA		3.0	-	5.0	V
R _{DS(on)}		rain to Source On Res	sistance		10V, I _D = 1.5A		-	2.1	2.5	Ω
9 _{FS}	Forwar	d Transconductance			20V, I _D = 1.5A		-	1.9	-	S
Dynamic (C _{iss}	Input C	apacitance	Vpc = 25V V		25V, V _{GS} = 0V		-	210	280	pF
C _{oss}		Capacitance	_	f = 1MHz		-	30	45	pF	
C _{rss}		e Transfer Capacitance	9			-	2.5	5	pF	
Q _{g(tot)}		ate Charge at 10V	_			-	6.2	9	nC	
Q _{gs}	Gate to	Source Gate Charge	_	$V_{DS} = V_{GS} =$	400V I _D = 3A 10V	-	-	1.4	-	nC
Q _{gd}	Gate to	Drain "Miller" Charge		• GS		(Note 4)	-	3.1	-	nC
Switching	Charac	teristics								
t _{d(on)}	Turn-Or	n Delay Time	-			-	10	30	ns	
t _r	Turn-Or	n Rise Time		V _{DD} =	250V, I _D = 3A		-	15	40	ns
	Turn-Of	f Delay Time		V_{GS} = 10V, R_{GEN} = 25 Ω		-	26	60	ns	
t _{d(off)}	Turn-Of	f Fall Time				(Note 4)	-	17	45	ns
t _{d(off)} t _f			_							
t _f	rce Dio	de Characteristic	S						2	Α
t _f Drain-Sou		de Characteristic m Continuous Drain to		de Forwa	rd Current		-	-	3	
brain-Sou	Maximu		Source Dic				-	-	12	A
t _f Drain-Sou I _S I _{SM}	Maximu Maximu	m Continuous Drain to	Source Dic Irce Diode F	orward C			-	-		
t _f	Maximu Maximu Drain to	m Continuous Drain to m Pulsed Drain to Sou	Source Dic Irce Diode F	orward C V _{GS} =	urrent			- - - 190	12	Α


3. $I_{SD} \le 3A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

4. Essentially Independent of Operating Temperature Typical Characteristics


FDPF3N50NZ — N-Channel UniFETTM II MOSFET





FDPF3N50NZ — N-Channel UniFETTM II MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF22S-003

Dimension in Millimeters

8

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

	all such liauchiaiks.		
AccuPower™	F-PFS™		Sync-Lock™
AX-CAP [®] *	FRFET®		SYSTEM ®*
BitSiC™	Global Power Resource SM	PowerTrench [®]	GENERAL
Build it Now™	GreenBridge™	PowerXS™	TinyBoost®
CorePLUS™	Green FPS™	Programmable Active Droop™	TinyBuck [®]
CorePOWER™	Green FPS™ e-Series™	QFET®	TinyCalc™
<i>CROSSVOLT</i> ™ CTL™	G <i>max</i> ™ GTO™	QS™ Quiet Series™	TinyLogic®
Circim Current Transfer Logic™	IntelliMAX™	RapidConfigure™	TINYOPTO™
	ISOPLANAR™		TinyPower™
Dual Cool™	Marking Small Speakers Sound Lo	ouder 🔘	TinyPWM™
EcoSPARK [®]	and Better™	Saving our world, 1mW/W/kW at a time™	TinyWire™
EfficentMax™	MegaBuck™	SignalWise™	TranSiC™
ESBC™	MIČROCOUPLER™	SmartMax™	TriFault Detect™ TRUECURRENT [®] *
R	MicroFET™	SMART START™	µSerDes™
+	MicroPak™	Solutions for Your Success™	
Fairchild [®]	MicroPak2™	SPM®	Ser <mark>Des</mark> ™
Fairchild Semiconductor [®]	MillerDrive™	STEALTH™	UHC [®]
FACT Quiet Series™	MotionMax™ mWSaver [®]	SuperFET [®]	Ultra FRFET™
FACT®	OptoHiT™	SuperSOT™-3 SuperSOT™-6	UniFET™
FAST®	OPTOLOGIC®	SuperSOT™-8	VCX™
FastvCore™ FETBench™	OPTOPLANAR [®]	SupreMOS [®]	VisualMax™
FETBench™ FPS™		SyncFET™	VoltagePlus™
110		- , -	XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: