

October 2013

FDPF5N50NZF N-Channel UniFETTM II FRFET[®] MOSFET 500 V, 4.2 A, 1.75 Ω

FDPF5N50NZF — N-Channel UniFETTM II FRFET[®] MOSFET

Features

- $R_{DS(on)}$ = 1.57 Ω (Typ.) @ V_{GS} = 10 V, I_D = 2.1 A
- Low Gate Charge (Typ. 9 nC)
- Low C_{rss} (Typ. 4 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- ESD Improved Capability
- RoHS Compliant

Applications

- LCD/LED TV
- Lighting
- Uninterruptible Power Supply
- AC-DC Power Supply

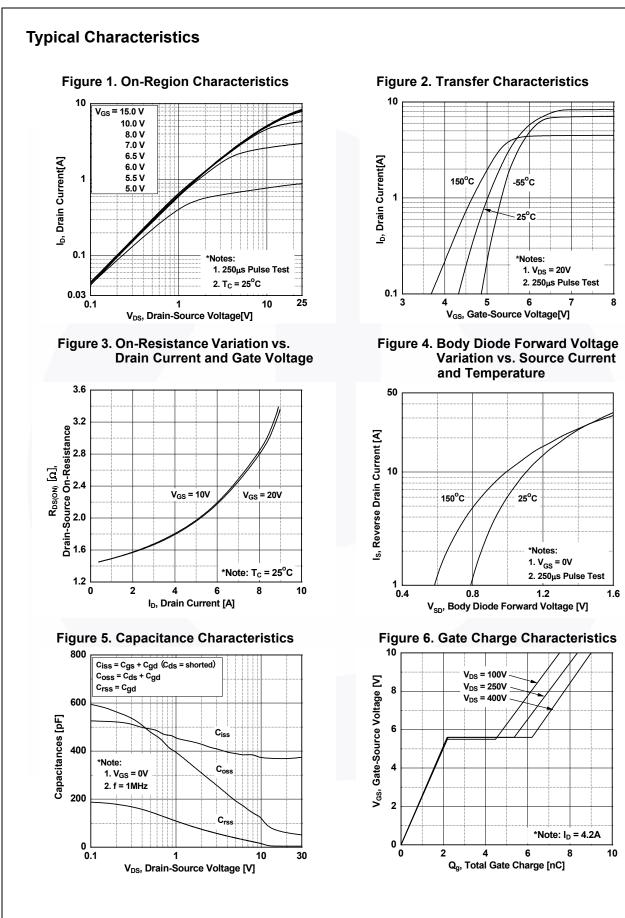
Description

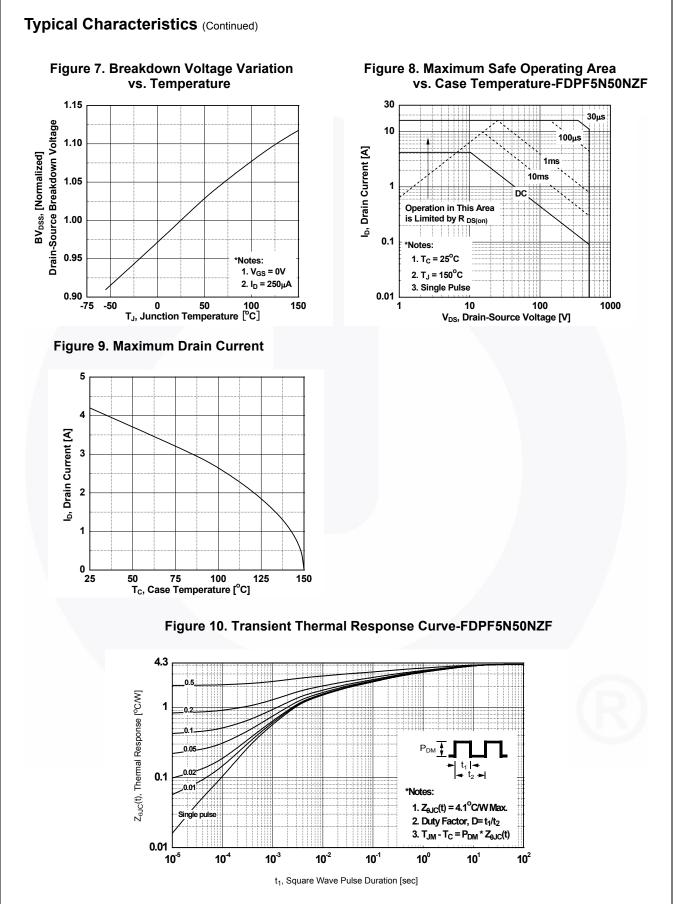
UniFETTM II MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on advanced planar stripe and DMOS technology. This advanced MOSFET family has the smallest on-state resistance among the planar MOSFET, and also provides superior switching performance and higher avalanche energy strength. In addition, internal gate-source ESD diode allows UniFET II MOSFET to withstand over 2kV HBM surge stress. The body diode's reverse recovery performance of UniFET II FRFET® MOSFET has been enhanced by lifetime control. Its trr is less than 100nsec and the reverse dv/dt immunity is 15V/ns while normal planar MOSFETs have over 200nsec and 4.5V/nsec respectively. Therefore, it can remove additional component and improve system reliability in certain applications in which the performance of MOSFET's body diode is significant. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

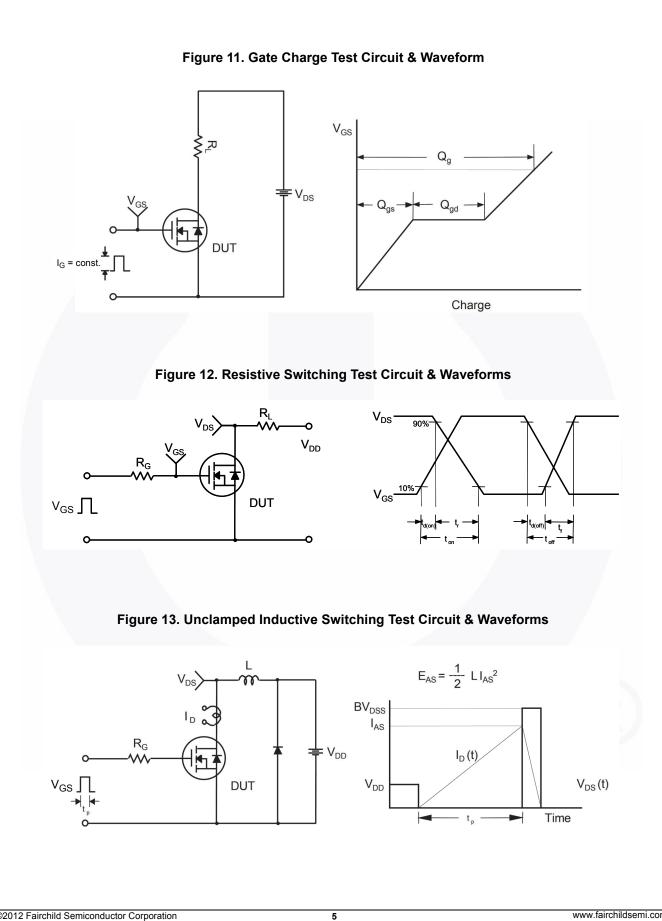
D

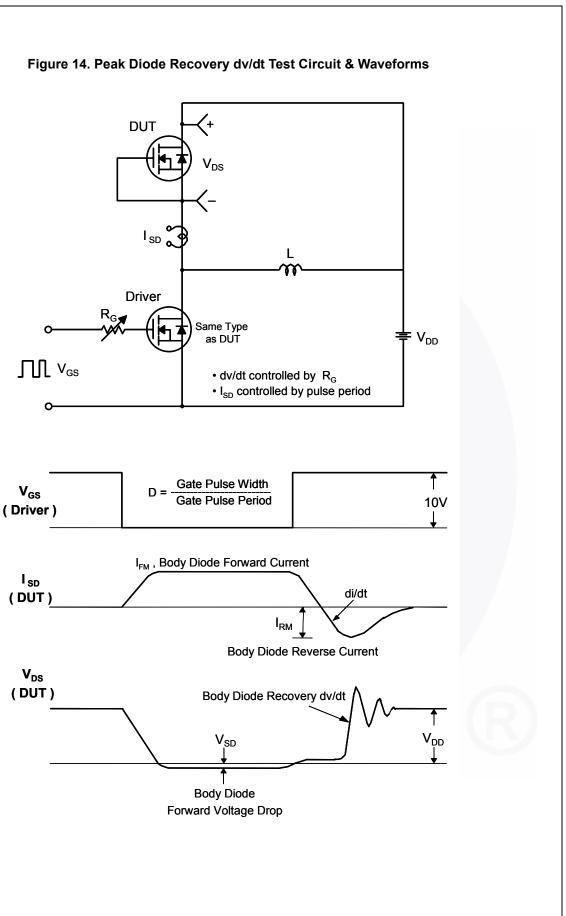
MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

o Source Voltag o Source Voltage Current Current			500 ±25 4.2* 2.5*	V V A
Current	- Continuous (T _C - Continuous (T _C		4.2*	
Current	- Continuous (T _C			A
Current		= 100°C)	2.5*	A
	- Pulsed		-	A
		(Note 1)	16*	А
Pulsed Avalanci	Single Pulsed Avalanche Energy		165	mJ
Avalanche Current		(Note 1)	4.2	A
Repetitive Avalanche Energy		(Note 1)	7.8	mJ
Peak Diode Recovery dv/dt		(Note 3)	20	V/ns
Dissinction	(T _C = 25 ^o C)		30	W
Dissipation	- Derate above 25	5°C	0.24	W/ºC
Operating and Storage Temperature Range			-55 to +150	°C
	•	urpose,	300	°C
	Dissipation ing and Storage um Lead Tempe m Case for 5 S	Dissipation $(T_C = 25^{\circ}C)$ - Derate above 25 ing and Storage Temperature Range	$ \begin{array}{c c} (T_{C} = 25^{\circ}C) \\\hline - \text{ Derate above } 25^{\circ}C \\\hline \text{ing and Storage Temperature Range} \\\hline \text{um Lead Temperature for Soldering Purpose,} \\m Case for 5 Seconds \\\hline \end{array} $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

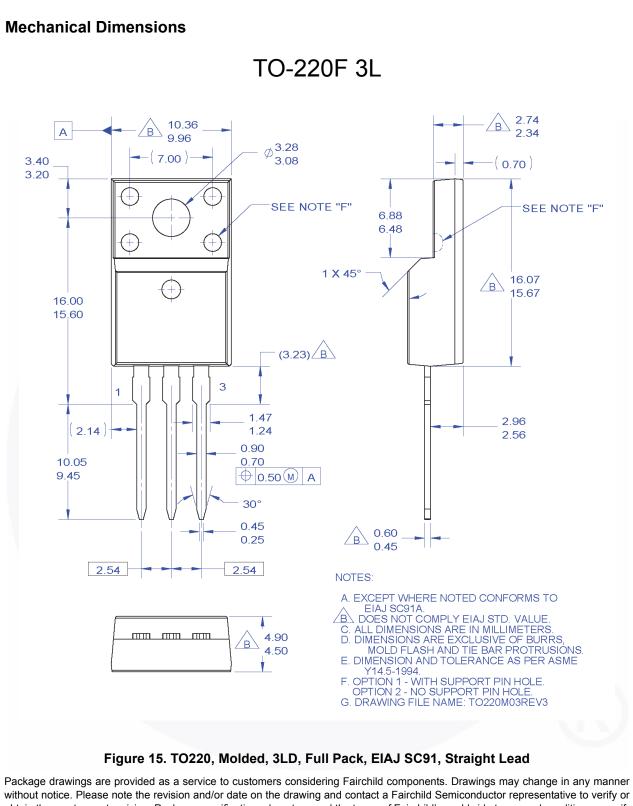

Thermal Characteristics


Symbol	Parameter	FDPF5N50NZF	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	rmal Resistance, Junction to Case, Max. 4.1	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W


Device N	-		Pack	age	Reel Size	Таре	Width		Quantit	y
FDPF5N			TO-2	220F Tube		N/A		50 units		
Electric	al Chai	racteristics T _C =	= 25°C unles	ss otherwis	se noted					
Symbol	ool Parameter			Test Conditions		Min.	Тур.	Max.	Unit	
Off Chara	acteristic	s								
BV _{DSS}	Drain to Source Breakdown Voltage		I _D = 250μA, V _{GS} = 0V, T _C = 25 ^o C		500	-	-	V		
∆BV _{DSS}		Breakdown Voltage Temperature					000			
$/\Delta T_{J}$	Coefficient			I _D = 25	50µA, Referenced to	25°C	-	0.5	-	V/°C
				V _{DS} =	$V_{DS} = 500V, V_{GS} = 0V$		-	-	10	
IDSS	Zero Gate Voltage Drain Current		ent	V _{DS} =	400V, V _{GS} = 0V,T _C =	= 125ºC	-	-	100	μA
I _{GSS}	Gate to	Body Leakage Curre	nt	V _{GS} =	±25V, V _{DS} = 0V		-	-	±10	μA
On Chara	cteristic	s								
V _{GS(th)}		hreshold Voltage		V _{GS} =	V _{DS} , I _D = 250μA		3.0	-	5.0	V
		Drain to Source On Re	sistance		10V, I _D = 2.1A		-	1.57	1.75	Ω
TDS(on)								1		
_{9FS} Dynamic	Forwar Charact	d Transconductance eristics apacitance		V _{DS} =	20V, I _D = 2.1A		-	4.2 365	- 485	S pF
g _{FS} Dynamic C _{iss} C _{oss}	Forwar Charact Input C Output	eristics apacitance Capacitance		V _{DS} =	25V, V _{GS} = 0V		-	365 50	65	pF pF
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss}	Forwar Charact Input C Output Revers	eristics apacitance Capacitance e Transfer Capacitanc	e	V _{DS} =	25V, V _{GS} = 0V		-	365 50 4	65 8	pF pF pF
9FS Dynamic C _{iss} C _{oss} C _{rss} Q _{g(tot)}	Forwar Charact Input C Output Revers Total G	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V	e	V _{DS} =	25V, V _{GS} = 0V Hz		-	365 50 4 9	65	pF pF pF nC
9FS Dynamic C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs}	Forwar Charact Input C Output Revers Total G Gate to	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge	e	V _{DS} =	25V, V _{GS} = 0V Hz 400V I _D = 4.2A		-	365 50 4 9 2	65 8	pF pF pF nC nC
9FS Dynamic C _{iss} C _{oss} C _{rss} Q _{g(tot)}	Forwar Charact Input C Output Revers Total G Gate to	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V	e	V _{DS} =	25V, V _{GS} = 0V Hz 400V I _D = 4.2A	(Note 4)	-	365 50 4 9	65 8	pF pF pF nC
9FS Dynamic C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd}	Forwar Charact Input C Output Revers Total G Gate to Gate to	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge	e	V _{DS} =	25V, V _{GS} = 0V Hz 400V I _D = 4.2A	(Note 4)	- - - - - -	365 50 4 9 2	65 8	pF pF pF nC nC
g_{FS} Dynamic C_{iss} C_{rss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching	Forwar Charact Input C Output Revers Total G Gate to Gate to C C C C C C C C C C C C C C C C C C C	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge	e	V _{DS} =	25V, V _{GS} = 0V Hz 400V I _D = 4.2A	(Note 4)	- - - - - -	365 50 4 9 2	65 8	pF pF pF nC nC
g_{FS} Dynamic C_{iss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$	Forwar Fo	eristics apacitance Capacitance e Transfer Capacitanc ate Charge at 10V o Source Gate Charge Drain "Miller" Charge	e	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$	25V, V _{GS} = 0V Hz 400V I _D = 4.2A 10V 250V, I _D = 4.2A	(Note 4)	- - - - - - - - - - - - - - - - - - -	365 50 4 9 2 4	65 8 12 - -	pF pF nC nC
9FS Dynamic C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r	Forwar Fo	eristics apacitance Capacitance e Transfer Capacitance ate Charge at 10V o Source Gate Charge Drain "Miller" Charge cteristics n Delay Time	e	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$	25V, V _{GS} = 0V Hz 400V I _D = 4.2A 10V	(Note 4)		365 50 4 9 2 4 12	65 8 12 - - 35	pF pF nC nC nC
C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$	Forwar Fo	eristics apacitance Capacitance e Transfer Capacitance ate Charge at 10V o Source Gate Charge Drain "Miller" Charge cteristics n Delay Time n Rise Time	e	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$	25V, V _{GS} = 0V Hz 400V I _D = 4.2A 10V 250V, I _D = 4.2A	(Note 4)	-	365 50 4 9 2 4 4 12 19	65 8 12 - - 35 50	pF pF nC nC nC nC
g_{FS} Dynamic C_{iss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$ t_r t_q $t_{d(off)}$ t_f	Forwar Fo	eristics apacitance Capacitance e Transfer Capacitance ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge Drain "Miller" Charge cteristics n Delay Time n Rise Time ff Delay Time ff Fall Time		$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$ $V_{DD} =$	25V, V _{GS} = 0V Hz 400V I _D = 4.2A 10V 250V, I _D = 4.2A		-	365 50 4 9 2 4 4 12 19 31	65 8 12 - - 35 50 70	pF pF nC nC nC nC ns ns
g_{FS} Dynamic C_{iss} C_{oss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_r Drain-Sou	Forwar Forwar	eristics apacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge Drain "Miller" Charge cteristics n Delay Time n Rise Time ff Delay Time	 :S	$V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	25V, $V_{GS} = 0V$ Hz 400V $I_D = 4.2A$ 10V 250V, $I_D = 4.2A$ 10V, $R_{GEN} = 25\Omega$		-	365 50 4 9 2 4 4 12 19 31	65 8 12 - - 35 50 70	pF pF nC nC nC nC ns ns
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou I _s	Forwar Fo	eristics capacitance capacitance e Transfer Capacitance ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge cteristics n Delay Time n Rise Time ff Delay Time ff Fall Time de Characteristic	Source Did	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	$25V, V_{GS} = 0V$ Hz $400V I_D = 4.2A$ 10V $250V, I_D = 4.2A$ $10V, R_{GEN} = 25\Omega$ rd Current		-	365 50 4 9 2 4 4 12 19 31	65 8 12 - - 35 50 70 55	pF pF nC nC nC nS ns ns ns
9 _{FS} Dynamic C _{iss} C _{oss} C _{rss} Q _{g(tot)} Q _{gs} Q _{gd} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou I _S I _{SM}	Forwar Fo	eristics capacitance Capacitance e Transfer Capacitance ate Charge at 10V Source Gate Charge Drain "Miller" Charge teristics n Delay Time n Rise Time ff Delay Time ff Fall Time de Characteristic un Continuous Drain to	Source Did urce Diode F	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	$25V, V_{GS} = 0V$ Hz $400V I_D = 4.2A$ $10V$ $250V, I_D = 4.2A$ $10V, R_{GEN} = 25\Omega$ rd Current urrent		-	365 50 4 9 2 4 4 12 19 31	65 8 12 - - 35 50 70 55 4.2	pF pF nC nC nC nS ns ns ns
g_{FS} Dynamic C_{iss} C_{rss} $Q_{g(tot)}$ Q_{gs} Q_{gd} Switching $t_{d(on)}$ t_r t_q $t_{d(off)}$ t_f	Forwar Fo	eristics capacitance Capacitance e Transfer Capacitance ate Charge at 10V o Source Gate Charge o Drain "Miller" Charge cteristics n Delay Time n Rise Time ff Delay Time ff Fall Time de Characteristic um Continuous Drain to source Capacitance ff Fall Time	Source Did urce Diode F	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DS} =$ $V_{GS} =$	$25V, V_{GS} = 0V$ Hz $400V I_D = 4.2A$ 10V $250V, I_D = 4.2A$ $10V, R_{GEN} = 25\Omega$ rd Current		- - - -	365 50 4 9 2 4 4 12 19 31 22 - -	65 8 12 - - 35 50 70 55 4.2 16	pF pF nC nC nC nC nS ns ns ns A A


 $\begin{array}{l} 3. \ I_{SD} \leq 4.2A, \ di/dt \leq 200A/\mu s, \ V_{DD} \leq BV_{DSS}, \ Starting \ T_J = 25^\circ C \\ \ 4. \ Essentially \ Independent \ of \ Operating \ Temperature \ Typical \ Characteristics \\ \end{array}$

FDPF5N50NZF — N-Channel UniFETTM II FRFET[®] MOSFET



FDPF5N50NZF — N-Channel UniFETTM II FRFET[®] MOSFET

obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF22S-003

Dimension in Millimeters

FDPF5N50NZF — N-Channel UniFETTM II FRFET[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™
AX-CAP [®] *	FRFET [®]
BitSiC™	Global Power Resource SM
Build it Now™	GreenBridge™
CorePLUS™	Green FPS™
CorePOWER™	Green FPS™ e-Series™
CROSSVOLT™	G <i>max</i> ™
CTL™	GTO™
Current Transfer Logic™	IntelliMAX™
	ISOPLANAR™
Dual Cool™	Marking Small Speakers S
EcoSPARK [®]	and Better™
EfficentMax™	MegaBuck™
ESBC™	MICROCOUPLER™
r R	MicroFET™
F	MicroPak™
Fairchild [®]	MicroPak2™
Fairchild Semiconductor®	MillerDrive™
EACT Quiet Series IM	MotionMax™

FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™

akers Sound Louder MotionMax mWSaver[®] OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

 $(1)_{\mathbb{B}}$ PowerTrench® PowerXS™ Programmable Active Droop™ QFET QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

SYSTEM^{®*} GENERAL TinyBoost[®] TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™ UHC® Ultra FRFET™ UniFFT™ VCX™ VisualMax™

VoltagePlus™

XS™

Sync-Lock™

FDPF5N50NZF

I

N-Channel UniFETTM II FRFET[®] MOSFE

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SvncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Tern

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDPF5N50NZF