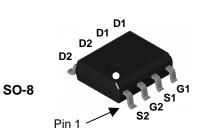
March 2002

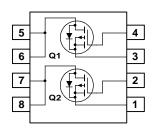
FDS4935A

FAIRCHILD

Dual 30V P-Channel PowerTrench[®] MOSFET

General Description


This P-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5V - 20V).


Applications

- Power management
- Load switch
- Battery protection

Features

- -7 A, -30 V $R_{DS(ON)} = 23 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 35 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- Low gate charge (15nC typical)
- Fast switching speed
- + High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

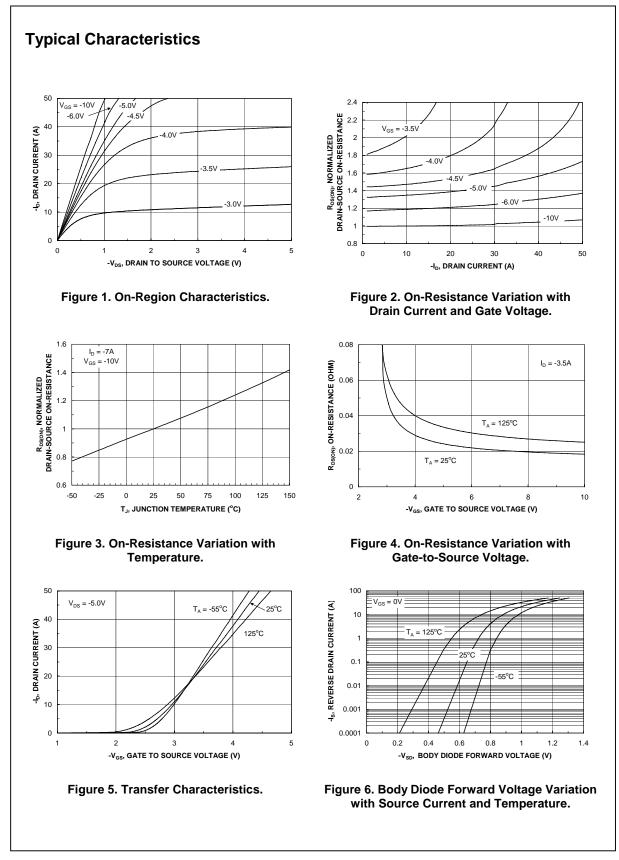
Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Sour	ce Voltage		-30	V
V _{GSS}	Gate-Sourc	e Voltage		±20	V
ID	Drain Curre	ent – Continuous	(Note 1a)	-7	А
		– Pulsed		-30	
PD	Power Dissipation for Dual Operation			2	
PD	Power Diss	ipation for Single Operation	n (Note 1a)	1.6	W
			(Note 1b)	1	
			(Note 1c)	0.9	
T _J , T _{STG}	Operating a	and Storage Junction Tem	-55 to +175	°C	
Therma	l Charac	teristics			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		pient (Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)		e (Note 1)	40	°C/W
Packag	e Markin	g and Ordering	Information		
Device Marking		Device	Reel Size	Tape width	Quantity
FDS4935A		FDS4935A	13"	12mm	2500 units

©2002 Fairchild Semiconductor Corporation

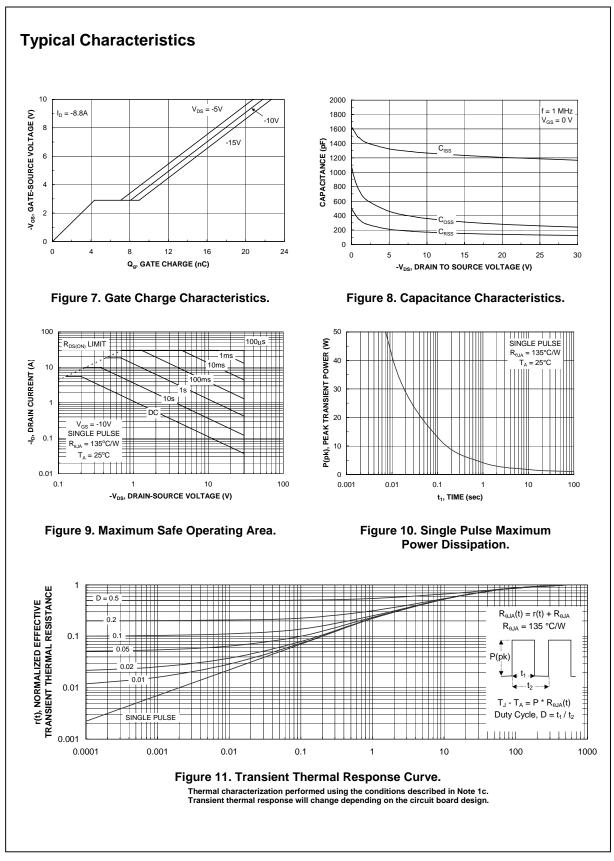
S
4
9
ω
U

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = -250 \mu A$	-30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		-24		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = -24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			-10	μA
GSSF	Gate-Body Leakage, Forward	$V_{GS} = -20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			-100	nA
GSSR	Gate–Body Leakage, Reverse	$V_{GS} = 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-1	-1.6	-3	V
<u>ΔVgs(th)</u> ΔTj	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		4.4		mV/°C
RDS(on)	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = -10 \ V, I_D = -7 \ A \\ V_{GS} = -4.5 \ V, I_D = -5.5 \ A \\ V_{GS} = -10 \ V, \ I_D = -7 \ A, \ T_J = 125^\circ C \end{array} $		19 28 26	23 35 34	mΩ
D(on)	On–State Drain Current	$V_{GS} = -10 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-30			А
FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_D = -7 \text{ A}$		19		S
Dynamic	Characteristics		•	•	•	•
Ciss	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$		1233		pF
Coss	Output Capacitance	f = 1.0 MHz		311		pF
Crss	Reverse Transfer Capacitance	1		152		pF
Switchin	g Characteristics (Note 2)		•	•	•	•
d(on)	Turn–On Delay Time	$V_{DD} = -15 V$, $I_D = -1 A$,		13	23	ns
r	Turn–On Rise Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		10	20	ns
d(off)	Turn–Off Delay Time			48	77	ns
-() f	Turn–Off Fall Time			25	40	ns
\mathbf{Q}_{g}	Total Gate Charge	$V_{DS} = -15 \text{ V}, \qquad I_{D} = -7 \text{ A},$		15	21	nC
$\hat{\boldsymbol{\lambda}}_{gs}$	Gate-Source Charge	$V_{GS} = -5 V$		4.4		nC
\mathcal{Q}_{qd}	Gate–Drain Charge			4.5		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
s	Maximum Continuous Drain–Source				-2.1	А
√ _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_{S} = -2.1 A$ (Note 2)		-0.75	-1.2	V
V _{SD} otes: R _{eJA} is the sun	Drain–Source Diode Forward	$V_{GS} = 0$ V, $I_S = -2.1$ A (Note 2) mal resistance where the case thermal reference	is defined :		-1.2	V

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper


b) 125°C/W when mounted on a 0.02 in² pad of 2 oz copper

0000


0000

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDS4935A

FDS4935A

FDS4935A Rev A(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ $I^2 C^{\mathsf{TM}}$ **ISOPLANAR™** LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC[®] **OPTOPLANAR™** PACMAN™ POP™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ VCX™ SPM™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER. NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.		
	First Production		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDS4935A</u>