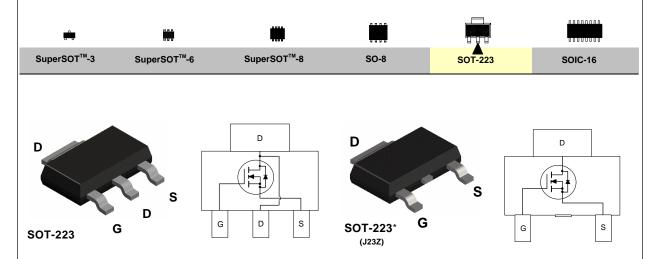
FAIRCHILD

SEMICONDUCTOR TM


FDT457N N-Channel Enhancement Mode Field Effect Transistor

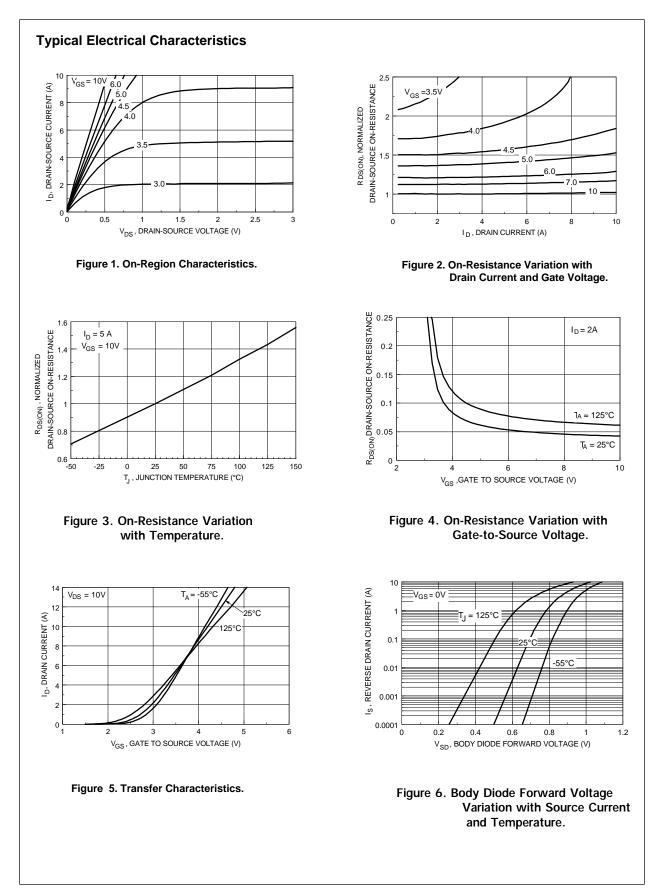
General Description

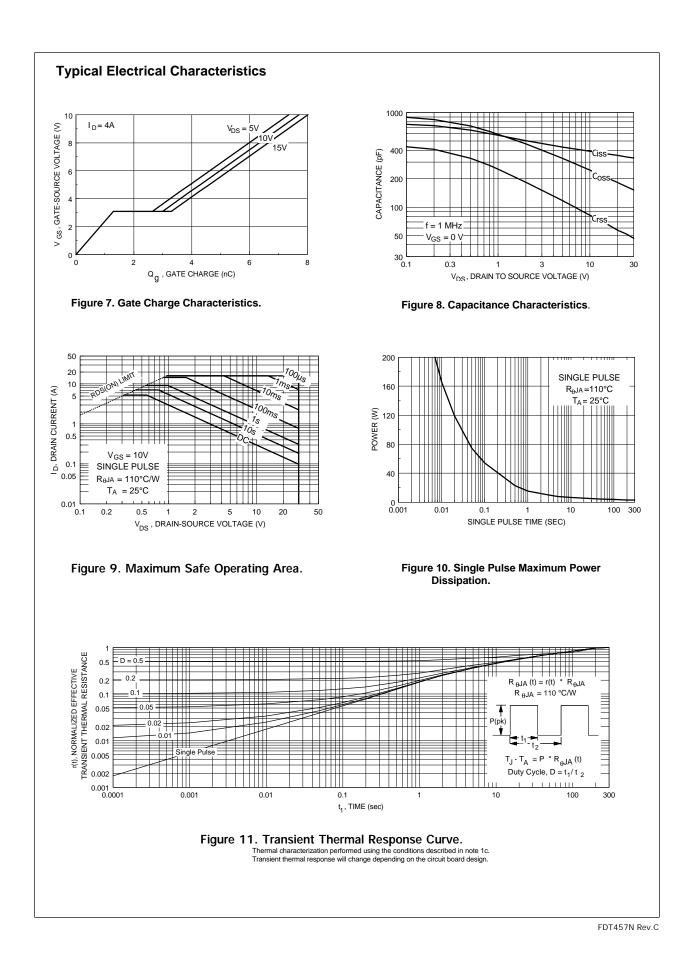
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance, provide superior switching performance. These products are well suited to low voltage, low current applications such as notebook computer power management, battery powered circuits, and DC motor control.

Features

- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	FDT457N	Units
V _{DSS}	Drain-Source Voltage	30	V
V _{GSS}	Gate-Source Voltage - Continuous	±20	V
I _D	Maximum Drain Current - Continuous (Note 1a)	5	А
	- Pulsed	16	
P _D	Maximum Power Dissipation (Note 1a)	3	W
	(Note 1b)	1.3	
	(Note 1c)	1.1	
「」,T _{stg}	Operating and Storage Temperature Range	-65 to 150	°C
THERMA	L CHARACTERISTICS		
R _{eja}	Thermal Resistance, Junction-to-Ambient (Note 1a)	42	°C/W
۲ _{өлс}	Thermal Resistance, Junction-to-Case (Note 1)	12	°C/W


© 1998 Fairchild Semiconductor Corporation

August 1998

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAR	ACTERISTICS						
3V _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		30			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	$I_{\rm D}$ = 250 µA, Referenced to 25 °C			35		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$				1	μA
033			T_=55°C			10	μA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$, ,			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				-100	nA
	CTERISTICS (Note 2)						
/ _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		1	1.6	3	V
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp.Coefficient	$I_{\rm D}$ = 250 µA, Referenced t	o 25 ℃		-4.2		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_{D} = 5 \text{ A}$			0.043	0.06	Ω
D3(ON)		63 . 5	T_=125°C		0.065	0.1	-
		$V_{GS} = 4.5 \text{ V}, I_{D} = 3.8 \text{ A}$	J		0.071	0.09	
D(ON)	On-State Drain Current	$V_{gs} = 10 \text{ V}, \text{ V}_{ps} = 5 \text{ V}$		5			А
g _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 5 \text{ A}$			5		S
-	HARACTERISTICS	53 / 5					1
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			235		pF
C _{oss}	Output Capacitance				145		pF
C _{rss}	Reverse Transfer Capacitance				50		pF
	CHARACTERISTICS (Note 2)						
D(on)	Turn - On Delay Time	$V_{DD} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$			5	10	ns
- () r	Turn - On Rise Time				12	22	ns
D(off)	Turn - Off Delay Time				12	22	ns
- () f	Turn - Off Fall Time				3	8	ns
\mathbf{Q}_{g}	Total Gate Charge	$V_{DS} = 10 \text{ V}, \ \text{I}_{D} = 5 \text{ A},$			4.2	5.9	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$			1.3		nC
 Q _{gd}	Gate-Drain Charge	-			1.7		nC
-	RCE DIODE CHARACTERISTICS AND MAX	IMUM RATINGS					1
Is	Maximum Continuous Drain-Source Diode Fo	rward Current				2.5	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 2.5 \text{ A}$ (Note	2)		0.85	1.2	V
-	a. 42°C/W when mounted on a 1 in² pad of 2oz Cu.	b. 95°C/W when mount 0.066 in ² pad of 2oz Cu	ed on a		c. 110°C/W n in² pad of 2c	when mount	bins. R _{euc} is

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FDT457N</u>