

Is Now Part of

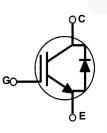
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

Features

- Maximum Junction Temperature : T_J =175^oC
- · Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} =1.6 V(Typ.) @ I_C = 40 A
- + 100% of the Parts Tested for $I_{LM}(1)$
- · High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- · RoHS Compliant


General Description

Using novel field stop IGBT technology, Fairchild's new series of field stop 3rd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Applications

• Solar Inverter, UPS, Welder, Telecom, ESS, PFC

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		FGH40T65SHD_F155	Unit	
V _{CES}	Collector to Emitter Voltage		650	V	
V _{GES}	Gate to Emitter Voltage		± 20	V	
♥ GES	Transient Gate to Emitter Voltage		± 30	V	
	Collector Current	@ T _C = 25 ^o C	80	А	
IC	Collector Current	@ T _C = 100 ^o C	40	А	
I _{LM (1)}	Pulsed Collector Current	@ T _C = 25°C	120	А	
I _{CM (2)}	Pulsed Collector Current		120	А	
1_	Diode Forward Current	@ T _C = 25 ^o C	40	А	
I _F	Diode Forward Current	@ T _C = 100°C	20	А	
I _{FM (2)}	Pulsed Diode Maximum Forward Curren	120	А		
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	268	W	
' D	Maximum Power Dissipation	@ T _C = 100°C	134	W	
TJ	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes:

1. V_{CC} = 400 V, V_{GE} = 15 V, I_C =120 A, R_G = 30 $\Omega,$ Inductive Load

2. Repetitive rating: Pulse width limited by max. junction temperature

April 2015

Thermal Characteristics

Symbol	Parameter	FGH40T65SHD_F155	Unit	
R _{0JC} (IGBT)	Thermal Resistance, Junction to Case, Max.	0.56	°C/W	
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case, Max.	1.71	°C/W	
R _{0JA}	Thermal Resistance, Junction to Ambient, Max.	40	°C/W	

Package Marking and Ordering Information

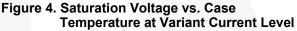
Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH40T65SHD_F155	FGH40T65SHD	TO-247 G03	Tube	-	-	30

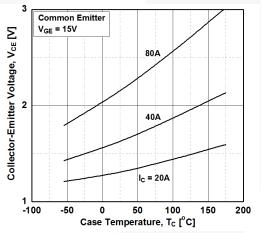
Electrical Characteristics of the IGBT T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 1 mA	650	-	-	V
ΔBV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$I_{\rm C}$ = 1 mA, Reference to 25°C	-	0.6	-	V/ºC
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	250	μA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{\rm C}$ = 40 mA, $V_{\rm CE}$ = $V_{\rm GE}$	4.0	5.5	7.5	V
OE(III)	5	$I_{\rm C} = 40$ A, $V_{\rm GE} = 15$ V	-	1.6	2.1	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 175^{\circ}\text{C}$	-	2.14	-	V
Dynamic C	Characteristics					
C _{ies}	Input Capacitance		-	1995	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30 V_{V_{GE}} = 0 V_{V_{GE}}$	-	70	-	pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz	-	23	-	pF
Switching	Characteristics			1		
t _{d(on)}	Turn-On Delay Time		-	19.2	- /	ns
t _r	Rise Time		-	34.4	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 40 A,	-	65.6	-	ns
t _f	Fall Time	R _G = 6 Ω, V _{GE} = 15 V,	-	9.6		ns
Eon	Turn-On Switching Loss	Inductive Load, $T_C = 25^{\circ}C$	-	1010	-	uJ
E _{off}	Turn-Off Switching Loss		-	297	-	uJ
E _{ts}	Total Switching Loss		-	1307	-	uJ
t _{d(on)}	Turn-On Delay Time		-	18.4	-	ns
t _r	Rise Time		-	32.8	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 400 \text{ V}, I_C = 40 \text{ A},$ $R_G = 6 \Omega, V_{GE} = 15 \text{ V},$ Inductive Load, $T_C = 175^{\circ}C$	-	71.2	-	ns
t _f	Fall Time		-	14.4	-	ns
	Turn-On Switching Loss		-	1390	-	uJ
Eon	1 a o o					
E _{on} E _{off}	Turn-Off Switching Loss	-	-	541	-	uJ

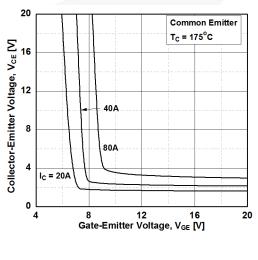
Electrical Characteristics of the IGBT (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
Qg	Total Gate Charge	V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V	-	72.2	-	nC
Q _{ge}	Gate to Emitter Charge		-	13.5	-	nC
Q _{gc}	Gate to Collector Charge		-	28.5	-	nC


Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted

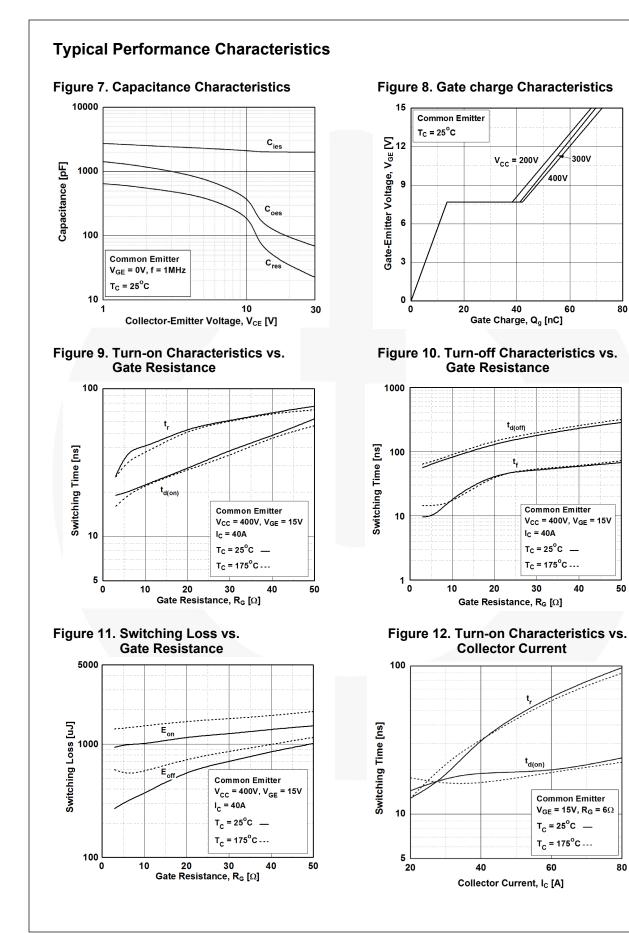

Symbol	Parameter	Test Conditio	ons	Min.	Тур.	Мах	Unit
V _{FM}	Diode Forward Voltage	I _F = 20 A	T _C = 25 ^o C	-	2.2	2.8	V
			T _C = 175 ^o C	-	1.94	-	
E _{rec}	Reverse Recovery Energy		T _C = 175 ^o C	-	50	-	uJ
t _{rr} Diode Reverse Recovery Time	Diode Reverse Recovery Time	I _F =20 A, dI _F /dt = 200 A/μs	T _C = 25 ^o C	-	31.8	-	ns
	$ _{F} = 20 \text{ A}, \text{ alp/at} = 200 \text{ A/}\mu\text{S}$	T _C = 175°C	-	192	-		
Q _{rr}	Q _{rr} Diode Reverse Recovery Charge		T _C = 25°C	-	50.6	-	nC
u n	Diodo Hoveroo Hooovery enarge		T _C = 175 ^o C	-	699		

Typical Performance Characteristics Figure 1. Typical Output Characteristics 120 120 $T_C = 25^{\circ}C$ 20V T_C = 175°C 15V 90 Collector Current, Ic [A] Collector Current, I_c [A] 90 10V 60 60 V_{GE} = 8V 30 30 0 0 1 2 3 4 Collector-Emitter Voltage, V_{CE} [V] 5 0 0 Figure 3. Typical Saturation Voltage Characteristics 120 3 Common Emitter Collector-Emitter Voltage, V_{CE} [V] V_{GE} = 15V $T_{C} = 25^{\circ}C$ — Collector Current, I_c [A] 90 T_C = 175[°]C 60 2 30 0 -100 0 2 3 4 -50 Collector-Emitter Voltage, V_{CE} [V] Figure 5. Saturation Voltage vs. V_{GE} 20 20 Common Emitter $T_c = 25^{\circ}C$ Collector-Emitter Voltage, V_{CE} [V] 16 12 I_C = 20A 40A 8 80A


Figure 2. Typical Output Characteristics

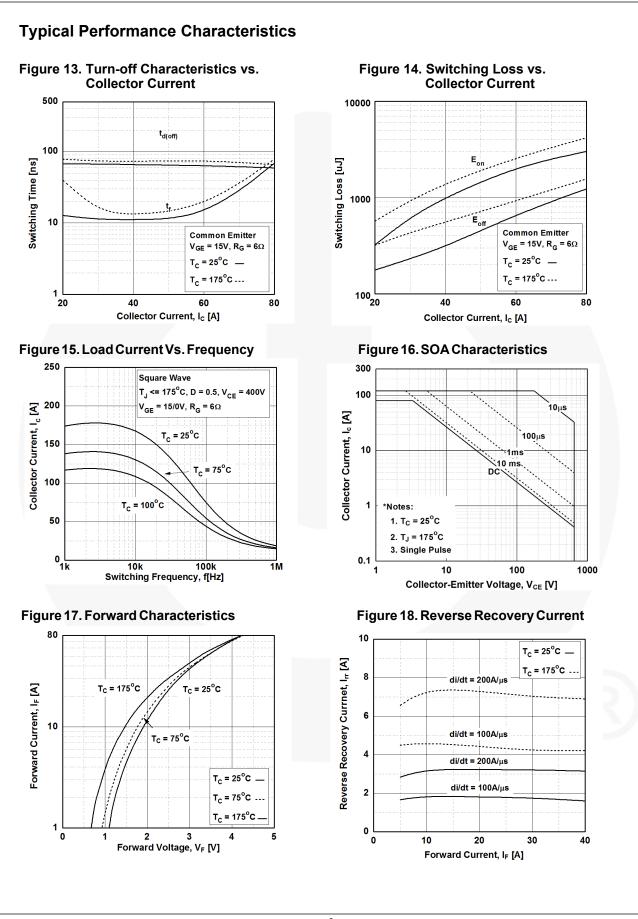
20V

©2014 Fairchild Semiconductor Corporation FGH40T65SHD Rev. 1.2

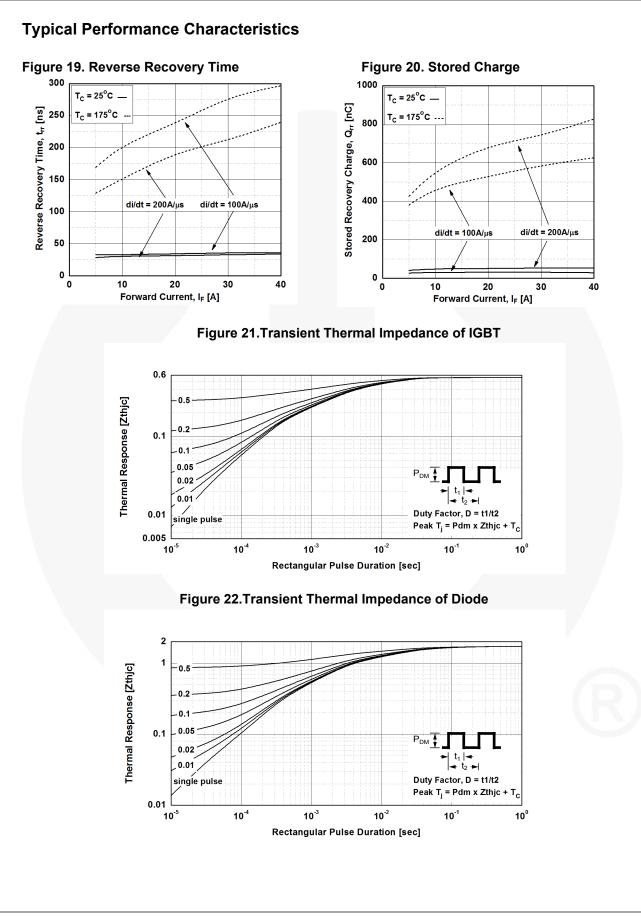

8 12 16 Gate-Emitter Voltage, V_{GE} [V]

0 ∟ 4

20


80

50



©2014 Fairchild Semiconductor Corporation FGH40T65SHD Rev. 1.2

80

©2014 Fairchild Semiconductor Corporation FGH40T65SHD Rev. 1.2

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGH40T65SHD_F155