

Is Now Part of

ON Semiconductor®

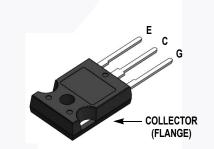
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

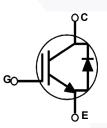
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

April 2015

FGH60N60SFDTU_F085 600 V, 60 A Field Stop IGBT

Features


- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 2.2 V @ I_C = 60 A
- High Input Impedance
- Fast Switching
- RoHS Compliant
- · Qualified to Automotive Requirements of AEC-Q101


Applications

- · Automotive chargers, Converters, High Voltage Auxiliaries
- · Inverters, PFC, UPS

General Description

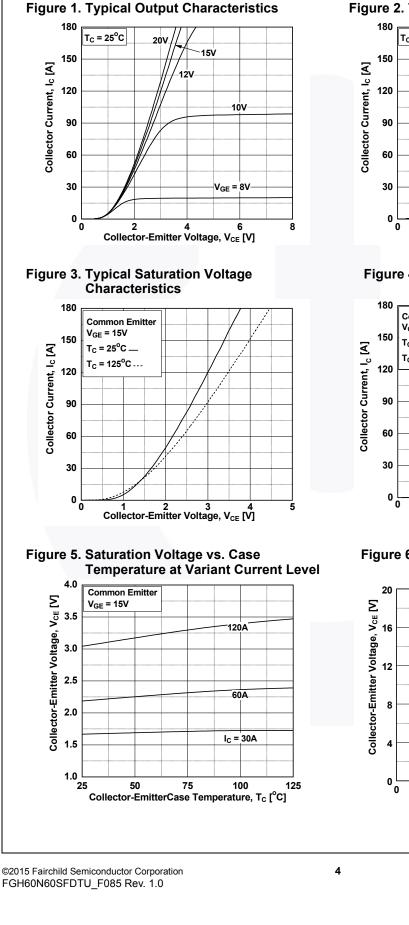
Using Novel Field Stop IGBT Technology, Fairchild's new series of Field Stop IGBTs offer the optimum performance for Automotive Chargers, Inverter, and other applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit
V _{CES}	Collector to Emitter Voltage		600	V
V	Gate to Emitter Voltage	±20	V	
V _{GES}	Transient Gate-to-Emitter Voltage	±30	v	
I _C	Collector Current	@ T _C = 25°C	120	A
10	Collector Current	@ T _C = 100 ^o C	60	A
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	180	A
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	378	W
. D	Maximum Power Dissipation	@ T _C = 100°C	151	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	300	°C	

Notes:

1: Repetitive test, Pulse width limited by max. juntion temperature


Thermal Characteristics

Symbol	Parameter	Тур.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	0.33	°C/W
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case	1.1	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	40	°C/W

Part I	Number	Top Mark	Pack	cage	Packing Method	Reel Size	Tape \	Width	Quantity
FGH60N60	GH60N60SFDTU_F085 FGH60N60SFD TC		TO-	-247 Tube		N/A	N/A		30
Electric	al Charac	teristics of t	he IG	вт	T _C = 25°C unless otherwise not	ed			
Symbol	F	Parameter			Test Conditions	Min.	Тур.	Max	Unit
Off Charac	teristics								
BV _{CES}	Collector to Er	nitter Breakdown Vo	ltage	V _{GE} =	0 V, I _C = 250 μA	600	-	-	V
ΔBV_{CES} / ΔT_J	Temperature (Voltage	Coefficient of Breako	down	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 250 \mu\text{A}$ $V_{CE} = V_{CES}, V_{GE} = 0 \text{V}$		-	0.4	-	V/ºC
I _{CES}	Collector Cut-	Off Current				-	_	250	μA
I _{GES}	G-E Leakage	Current		$V_{GE} = V_{GES}, V_{CE} = 0 V$		-	-	±400	nA
				_				1	I
On Charac	1								
V _{GE(th)}	G-E Threshold Voltage			-	60 μA, V _{CE} = V _{GE}	4.0	5.1	6.6	V
		–	-	A, V _{GE} = 15 V	-	2.2	2.9	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage		-	I _C = 60 T _C = 1	A, V _{GE} = 15 V, 25 ^o C	-	2.4	-	V
Dynamic C	haracteristics								
C _{ies}	Input Capacita			V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz		-	2940	-	pF
C _{oes}	Output Capac					-	310	-	pF
C _{res}	Reverse Trans	sfer Capacitance				-	100	-	pF
Switching	Characteristic	s							
t _{d(on)}	Turn-On Delay	y Time				-	26	-	ns
t _r	Rise Time			$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 60 \text{ A},$ R _G = 5 Ω, V _{GE} = 15 V, Inductive Load, T _C = 25 ^o C		-	54	-	ns
t _{d(off)}	Turn-Off Delay	y Time				-	134	-	ns
t _f	Fall Time					-	18	62	ns
Eon	Turn-On Swite	ching Loss				-	1.97	-	mJ
E _{off}	Turn-Off Swite	ching Loss				/	0.57	-	mJ
E _{ts}	Total Switchin	g Loss				-	2.54	-	mJ
t _{d(on)}	Turn-On Delay	y Time				-	26	-	ns
t _r	Rise Time			V _{CC} = 400 V, I _C = 60 A,		-	50	-	ns
t _{d(off)}	Turn-Off Delay	y Time				-	142	-	ns
t _f	Fall Time			R _G = 5 Ω, V _{GE} = 15 V,		-	24	-	ns
Eon	Turn-On Swite	ching Loss		Inductive Load, T _C = 125 ^o C		-	2.5	-	mJ
E _{off}	Turn-Off Swite	ching Loss				-	0.8	-	mJ
E _{ts}	Total Switchin	g Loss				-	3.2	-	mJ
Qg	Total Gate Ch	arge				-	188	-	nC
Q _{ge}	Gate to Emitte	er Charge		$V_{CE} = $	400 V, I _C = 60 A,	-	21	-	nC
Q _{gc}	Gate to Collec	-		V _{GE} = 15 V		_	98	-	nC

FGH60N60SFDTU_F085 — 600 V, 60 A Field Stop IGBT

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Unit
V _{FM}	Diode Forward Voltage	I _F = 30 A	T _C = 25°C	-	1.9	2.6	V
* FIM		1F 0077	T _C = 125°C	-	1.7	-	
t	Diode Reverse Recovery Time	I _F = 30 A, di _F /dt = 200 A/μs	T _C = 25°C	-	55	-	ns
۲r			T _C = 125°C	-	204	-	
Q _{rr}	Diode Reverse Recovery Charge	ης – 30 Α, αιείαι – 200 Αίμα	T _C = 25 ^o C	-	125	-	nC
			T _C = 125°C	-	895	-	

Typical Performance Characteristics

Figure 2. Typical Output Characteristics

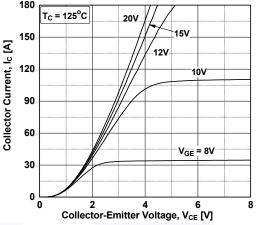
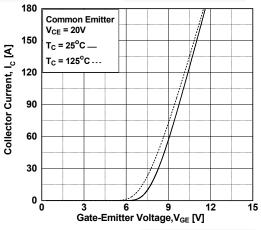
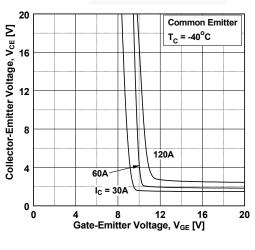




Figure 4. Transfer Characteristics

Common Emitter

16

300V

200V

150

200

20

T_c = 125^oC

12

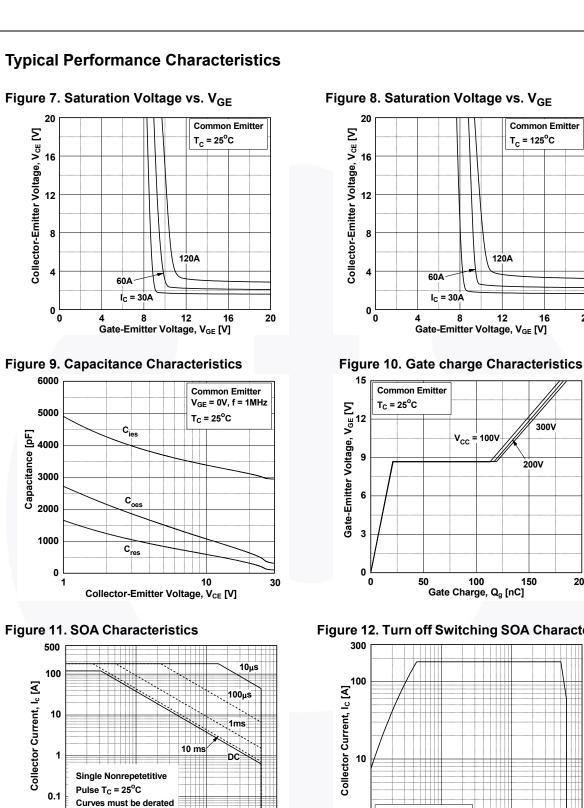
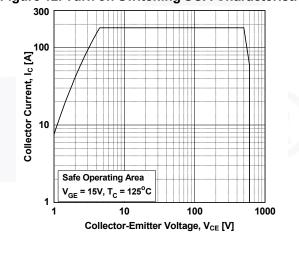
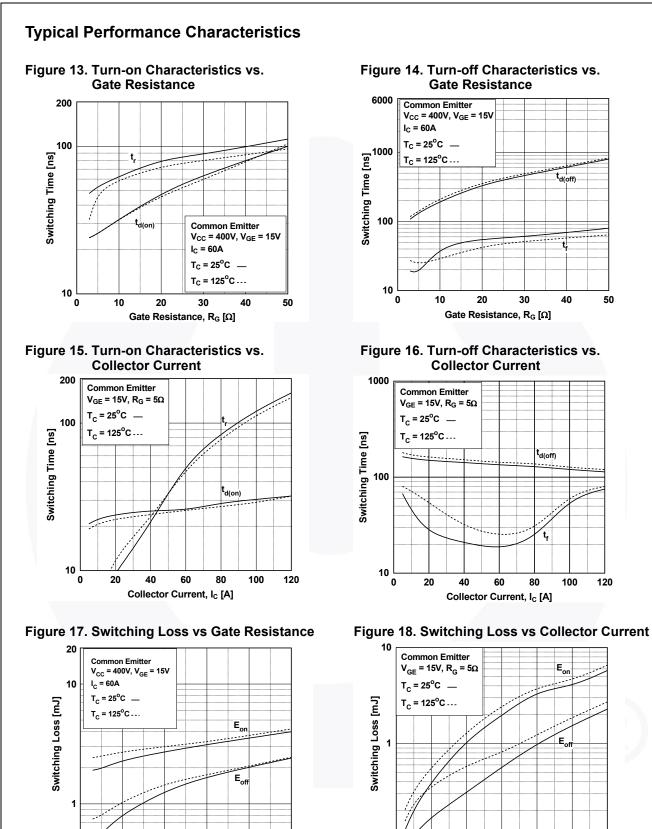



Figure 12. Turn off Switching SOA Characteristics

0.01

1

linearly with increase in temperature


10


Collector-Emitter Voltage, V_{CE} [V]

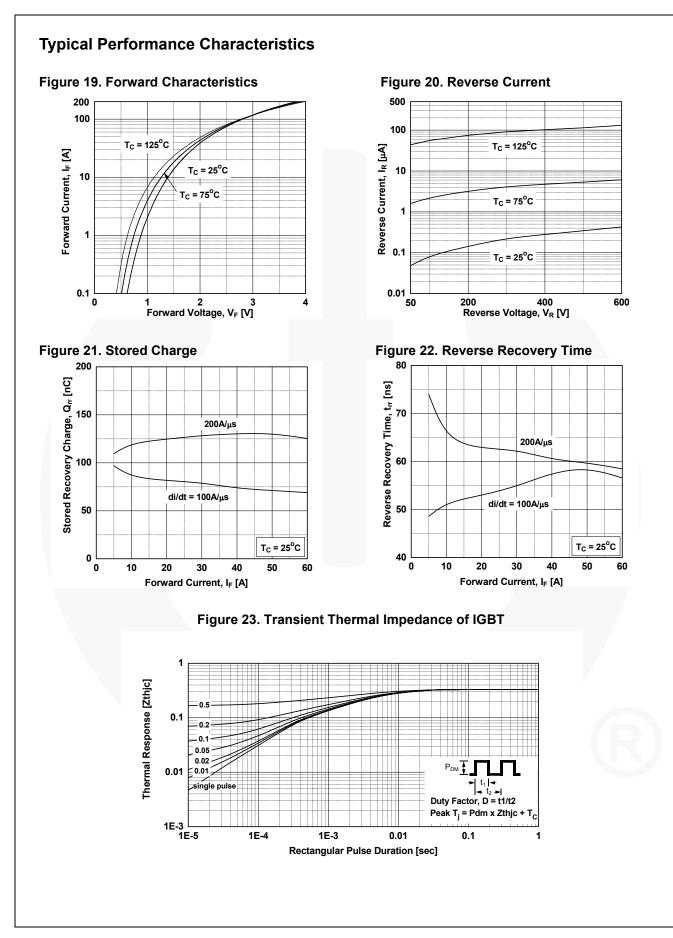
100

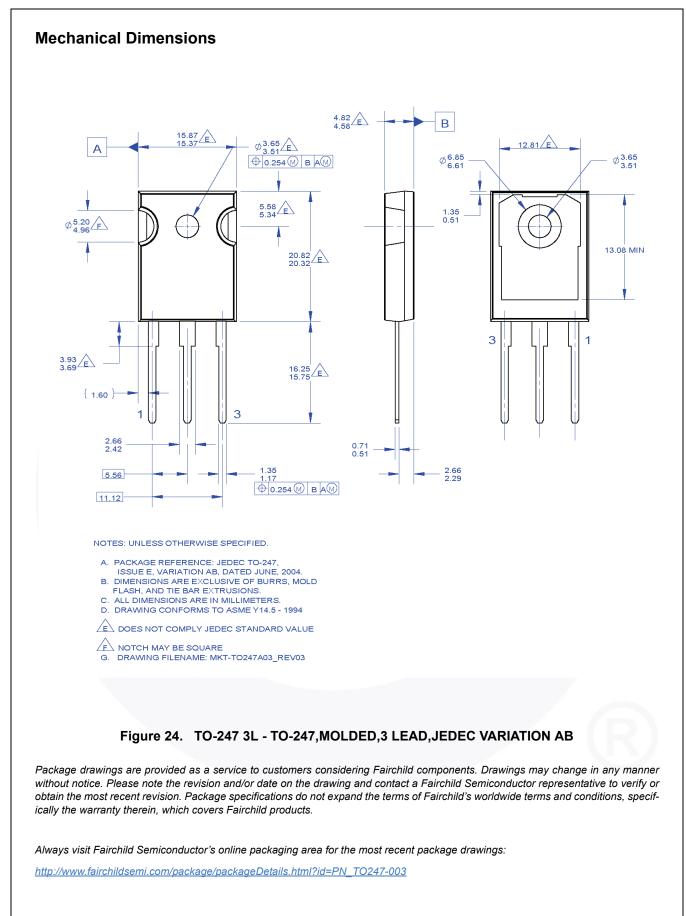
5

1000

©2015 Fairchild Semiconductor Corporation FGH60N60SFDTU F085 Rev. 1.0

0.5


Gate Resistance, R_G [Ω]


Collector Current, Ic [A]

www.fairchildsemi.com

0.1

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awinda [®] AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CroePOWER TM CROSSVOLT TM CTL TM Current Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastvCore TM FETBench TM FPS TM	F-PFS [™] FRFET [®] Global Power Resource SM Green FPS [™] Green FPS [™] e-Series [™] Gmax [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] Marking Small Speakers Sound Louder and Better [™] MegaBuck [™] MICROCOUPLER [™] MicroPak2 [™] MotionGrid [®] MTI [®] MTX [®] MVN [®] mWSaver [®] OptoHiT [™] OPTOLOGIC [®]	OPTOPLANAR [®] → Power Supply WebDesigner [™] PowerXS [™] Programmable Active Droop [™] QFE [®] QS [™] Quiet Series [™] RapidConfigure [™] → O TM Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -3 SupreMOS [®] SyncFET [™] SyncFET [™]	ESYSTEM ® CECNERAL TinyBoost [®] TinyOalc TM TinyCalc TM TinyOpTO TM TinyPOWer TM TinyPWM TM TinyPWM TM TinyWite TM TinyWite TM TinyAut Detect TM TranSiC TM TifLaut Detect TM TranSiC TM TifLaut Detect TM TRUECURRENT [®] μ SerDes TM Utra FRFET TM VCX TM VisualMax TM VoltagePlus TM XS TM Xsens TM 仙童 TM
---	--	--	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's guality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGH60N60SFDTU_F085