

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

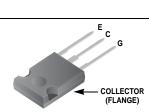
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

November 2013

FAIRCHILD

FGH75T65UPD_F085 650V, 75A Field Stop Trench IGBT

Features


- Maximum Junction Temperature : T_J = 175°C
- Positive Temperaure Co-efficient for easy parallel operating
- High current capability
- Low saturation voltage: $V_{CE(sat)} = 1.65V(Typ.) @ I_C = 75A$
- High input impedance
- Tightened Parameter Distribution
- RoHS compliant
- Qualified to Automotive Requirements of AEC-Q101

General Description

Using Novel Field Stop Trench IGBT Technology, Fairchild's new series of Field Stop Trench IGBTs offer the optimum performance for Automotive chargers, Solar Inverter, UPS and Digital Power Generator where low conduction and switching losses are essential.

Applications

- Automotive chargers, Converters, High Voltage Auxiliaries
- Solar Inverters, UPS, Digital Power Generator

Absolute Maximum Ratings

Symbol	Description		Ratings	Units	
V _{CES}	Collector to Emitter Voltage		650	V	
V _{GES}	Gate to Emitter Voltage		± 20	V	
I _C	Collector Current	@ T _C = 25°C	150	A	
·C	Collector Current	@ T _C = 100°C	75	A	
I _{CM (1)}	Pulsed Collector Current		225	A	
I _F	Diode Forward Current	@ T _C = 25°C	75	A	
	Diode Forward Current	@ T _C = 100°C	50	A	
I _{FM(1)}	Pulsed Diode Maximum Forward Curren	t	225	A	
P _D	Maximum Power Dissipation	@ T _C = 25°C	375	W	
	Maximum Power Dissipation	@ T _C = 100°C	187	W	
SCWT	Short Circuit Withstand Time	@ T _C = 25 ^o C	5	us	
TJ	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Ratings	Units	
$R_{\theta JC}(IGBT)_{(2)}$	Thermal Resistance, Junction to Case 0.4		°C/W	
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case	0.86	°C/W	
Symbol	Parameter	Тур.	Units	
R _{0JA} Thermal Resistance, Junction to Ambient (PCB Mou		40	°C/W	

Package Marking and Ordering Information

Device Marking Device		Package	Packing Type	Qty per Tube	
FGH75T65UPD	FGH75T65UPD_F085	85 TO-247 Tube		30ea	

For Fairchild's definition of "green" Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

Electrical Characteristics of the IGBT T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units	
Off Charac	teristics						
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$	650	-	-	V	
$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$	-	0.65	-	V/ºC	
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	250	1	
		I _{CES} at 80%*B _{VCES,} 175°C	-	-	3600	μA	
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	-	±400	nA	
On Charac	teristics						
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 75 \text{mA}, V_{CE} = V_{GE}$	4.0	6.0	7.5	V	
00(01)		$I_{\rm C} = 75$ A, $V_{\rm GE} = 15$ V	-	1.69	2.3	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 75A, V_{GE} = 15V,$ $T_{C} = 175^{\circ}C$	-	2.21	-	V	
Dynamic C	haracteristics						
C _{ies}	Input Capacitance		-	5665	-	pF	
C _{oes}	Output Capacitance	$V_{CE} = 30V_{,}V_{GE} = 0V_{,}$	-	205	_	pF	
C _{res}	Reverse Transfer Capacitance	f = 1MHz	_	100	-	pF	
	•	I			I		
	Characteristics				10		
t _{d(on)}	Turn-On Delay Time	-	-	32	48	ns	
t _r	Rise Time		-	43	71	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 400 V, I_C = 75 A,$	-	166	216	ns	
t _f	Fall Time	$R_G = 3\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	-	24	33	ns	
Eon	Turn-On Switching Loss	-	-	2.85	4.80	mJ	
E _{off}	Turn-Off Switching Loss		-	1.20	1.60	mJ	
E _{ts}	Total Switching Loss		-	4.05	5.3	mJ	
t _{d(on)}	Turn-On Delay Time		-	30	-	ns	
t _r	Rise Time		-	57	-	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 400 V, I_C = 75 A,$	-	176	-	ns	
t _f	Fall Time	$R_G = 3\Omega$, $V_{GE} = 15V$,	-	21	-	ns	
Eon	Turn-On Switching Loss	Inductive Load, $T_C = 175^{\circ}C$	-	4.45	-	mJ	
E _{off}	Turn-Off Switching Loss		-	1.60	-	mJ	
E _{ts}	Total Switching Loss]	-	6.05	-	mJ	
Tsc	Short Circuit Withstand Time	$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 400$ V, Rg = 10 Ω	5	-	-	us	

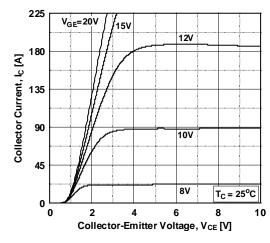
Notes:

1:Repetitive rating: Pulse width limited by max junction temperature.

2:Rthjc for TO-247 : according to Mil standard 883-1012 test method. Rthja for TO-247 : according to JESD51-2, test method environmental condition and JESD51-10, test boards for through hole perimeter leaded package thermal measurements. JESD51-3 : Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Package.

Ţ
G
Ξ.
2
2
റ്
3H75T65U
\subseteq
Р
_
ö
-085
G
0
650
ž
75,
Þ
_
Ţ
-ield
Q
S
Stop
ŏ
o IGB
G
ω
-

Electrical Characteristics of the IGBT (Continued)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Units
Qg	Total Gate Charge		-	385	578	nC
Q _{ge}	Gate to Emitter Charge	V _{CE} = 400V, I _C = 75A, V _{GE} = 15V	-	45	68	nC
Q _{gc}	Gate to Collector Charge	VGE - 10V	-	210	315	nC

Electrical Characteristics of the Diode $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Мах	Units
V _{FM}	Diode Forward Voltage	$I_F = 50A$	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	2.1	2.6	V
* FIVI			T _C = 175 ^o C	-	1.7	-	
E _{rec}	Reverse Recovery Energy		$T_{\rm C} = 175^{\rm o}{\rm C}$	-	40	-	uJ
t	Diode Reverse Recovery Time	I _F =50A, dI _F /dt = 200A/μs	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	43	85	ns
۲r		$1F = 30A$, $0F/0t = 200A/\mu s$	T _C = 175 ^o C	-	162	-	110
Q _{rr}	Diode Reverse Recovery Charge		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	83	170	nC
~11	2.000 Hororor Hororory Charge		$T_{\rm C} = 175^{\rm o}{\rm C}$	-	805	-	

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

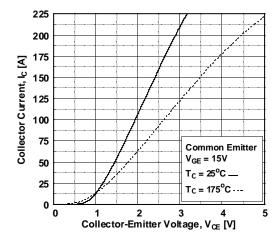


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

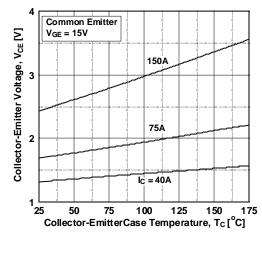
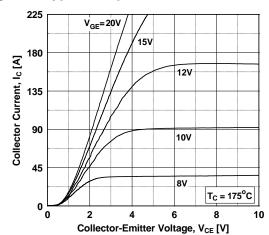



Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

Typical Performance Characteristics

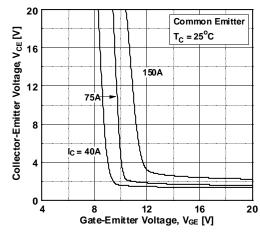


Figure 11. SOA Characteristics

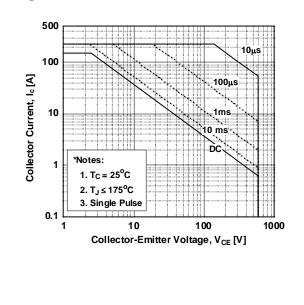


Figure 8. Saturation Voltage vs. V_{GE}

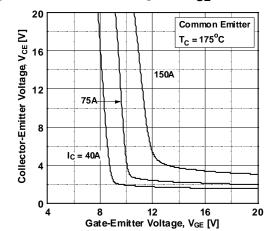


Figure 10. Gate charge Characteristics

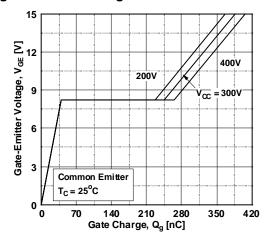
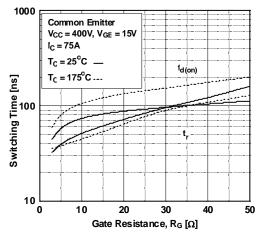
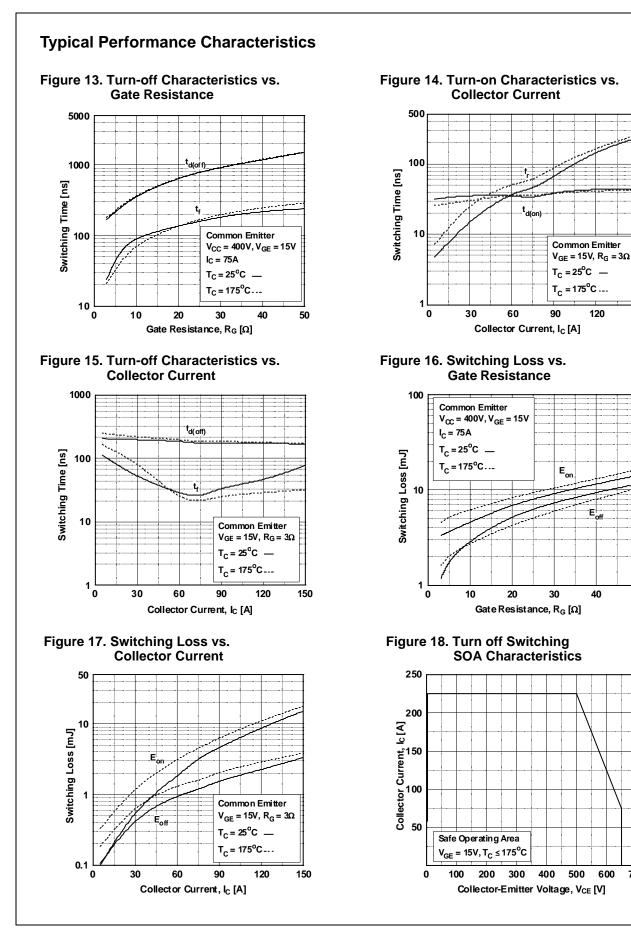
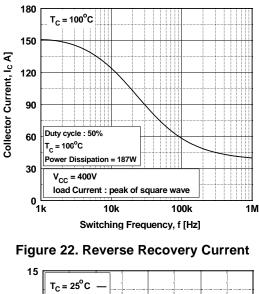




Figure 12. Turn-on Characteristics vs. Gate Resistance



FGH75T65UPD_F085 650V 75A Field Stop IGBT

Typical Performance Characteristics Figure 19. Current Derating 180 Average Forward Current, I_{F(AV)} [A] 150 120 90 60 30 0 175 0 25 50 75 100 125 150 200 Case temperature, T_c [°C] **Figure 21. Forward Characteristics** 300 100 Forward Current, IF [A] T_C = 175°C 10 $T_C = 125^{\circ}C$ T_C = 75°C $T_C = 25^{\circ}C$ 1 1 2 3 Forward Voltage, V_F [V] 0 4 Figure 23. Stored Charge 1.0 = 25°C Stored Recovery Charge, Qrr [uC] 200A/µs = 175°C 0.8 c di/dt = 100A/µs 0.6 0.4

Figure 20. Load Current Vs. Frequence

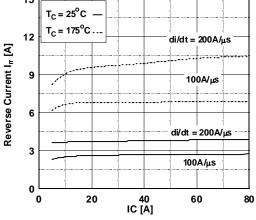
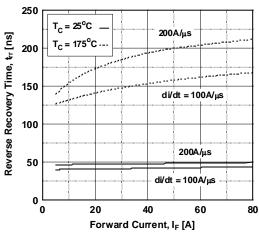



Figure 24. Reverse Recovery Time

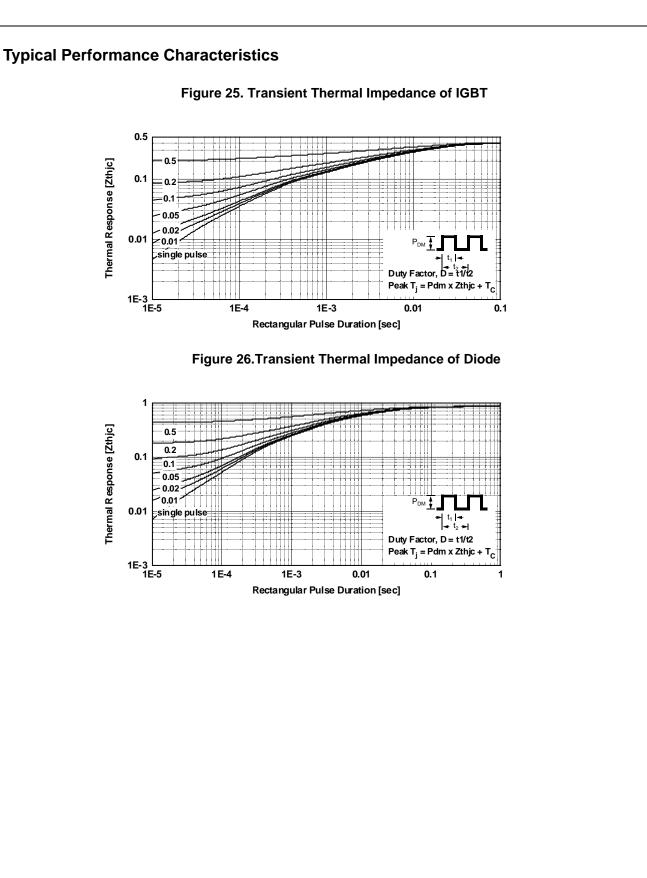
0.2

0.0

0

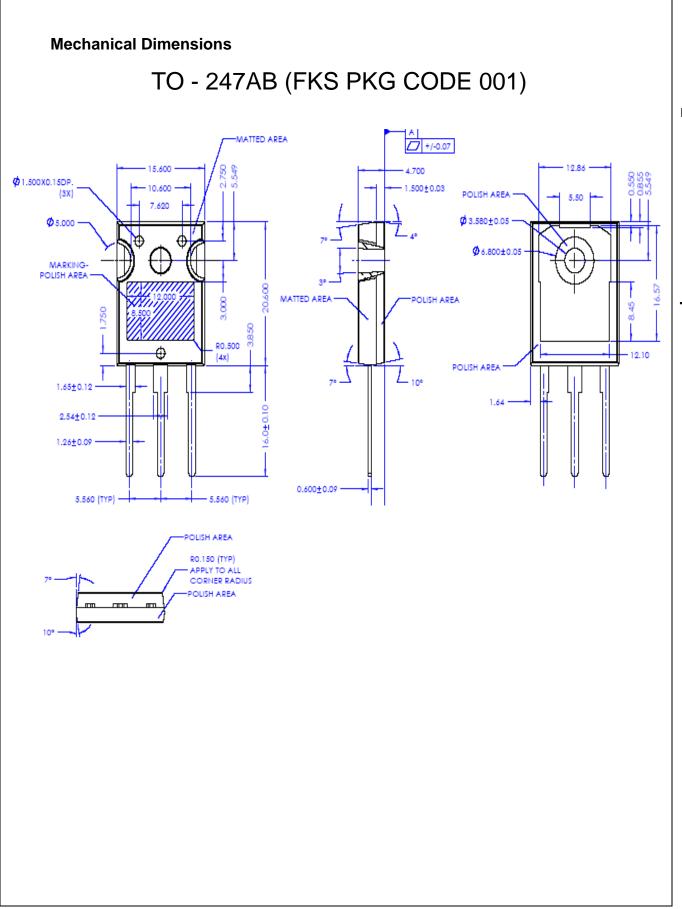
200 A / µs

40


Forwad Current, IF [A]

20

di/dt = 100A/µs


80

60

Thermal Response [Zthjc]

Thermal R esponse [Zthjc]

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

PowerTrench[®]

PowerXS™

2Cool™ AccuPower™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ **DEUXPEED®** Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

(R) + Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FlashWriter[®] * FPS™

G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]** R

Global Power ResourceSM

Green FPS[™] e-Series[™]

F-PESTM

FRFET®

Green Bridge™

Green FPS[™]

Programmable Active Droop™ **QFET[®]** QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SyncFET™

The Power Franchise[®] p wer franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* <u>uSerD</u>es™ UHC® Ultra FRFET™ UniFET™ VCX™

VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Sync-Lock™

GENERAL ®*

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 161

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGH75T65UPD_F085