

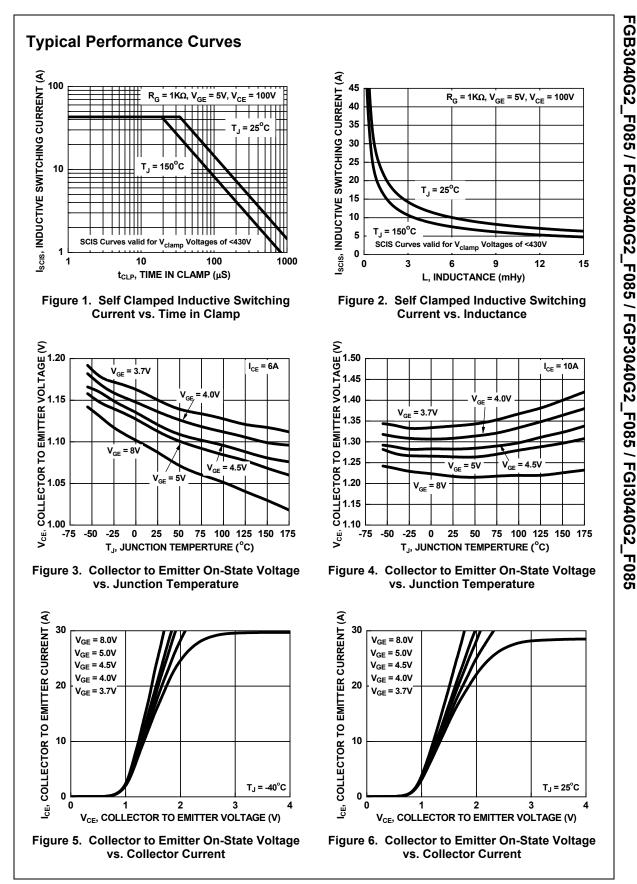
Devic	e Marking	Device	Package	Reel Size Ta		ape Width		Quantity	
FGE	33040G2	FGB3040G2_F085	TO-263AB	330n	nm	24mm		80	0
FGI	GD3040G2 FGD3040G2_F085		TO-252AA	330n	าฑ	16mm		250	0
FGF	P3040G2	FGP3040G2_F085	TO-220AB	Tub	е	N/A		50	
FGI	3040G2	FGI3040G2_F085	TO-262AA	TO-262AA Tube		N/A		50	
lectr	ical Char	racteristics T _A = 25°	°C unless otherwise no	oted					
Symbol		Parameter	Test Co	onditio	ns	Min	Тур	Max	Units
V _{CER}	Collector to E	mitter Breakdown Voltage	$T_{\rm J} = -40$ to 150°C			370	400	430	v
8V _{CES}	Collector to E	mitter Breakdown Voltage	$I_{CE} = 10$ mA, $V_{GE} = 0$ R _{GE} = 0, T _J = -40 to 150 ^o C	V,		390	420	450	v
BV _{ECS}	Emitter to Co	llector Breakdown Voltage	I _{CE} = -20mA, V _{GE} = 0 T _J = 25°C	IV,		28	-	-	V
3V _{GES}	Gate to Emitt	er Breakdown Voltage	I_{GES} = ±2mA			±12	±14	-	V
CER	Collector to F	Emitter Leakage Current	V _{CE} = 250V, R _{GE} = 1		T _J = 25°C	-	-	25	μA
ER					T _J = 150 ^o C	-	-	1	mA
ECS	Emitter to Co	llector Leakage Current	V _{EC} = 24V,	-	T _J = 25 ^o C	-	-	1	mA
505		C			Т _Ј = 150 ^о С	-	-	40	110 (
1	Series Gate I					-	120	-	Ω
2	Gate to Emitt	er Resistance				10K	-	30K	Ω
n Sta	te Charact	eristics							
CE(SAT)	Collector to E	Emitter Saturation Voltage	$I_{CE} = 6A, V_{GE} = 4V,$		T _J = 25°C	-	1.15	1.25	V
CE(SAT)		Emitter Saturation Voltage	I _{CE} = 10A, V _{GE} = 4.5 ^v		T _J = 150 ^o C	-	1.35	1.50	V
CE(SAT)	Collector to E	Emitter Saturation Voltage	$I_{CE} = 15A, V_{GE} = 4.5V,$		T _J = 150 ^o C	-	1.68	1.85	V
SCIS	Self Clamped	Inductive Switching	L = 3.0 mHy,RG = 1K VGE = 5V, (Note 1)	Ω,	TJ = 25°C	-	-	300	mJ

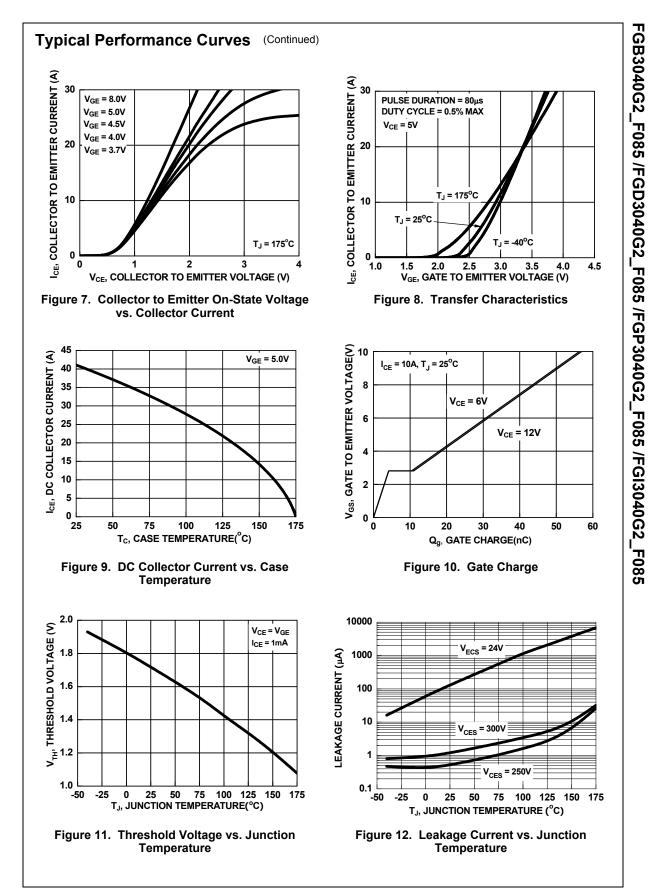
Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance Junction to Case	

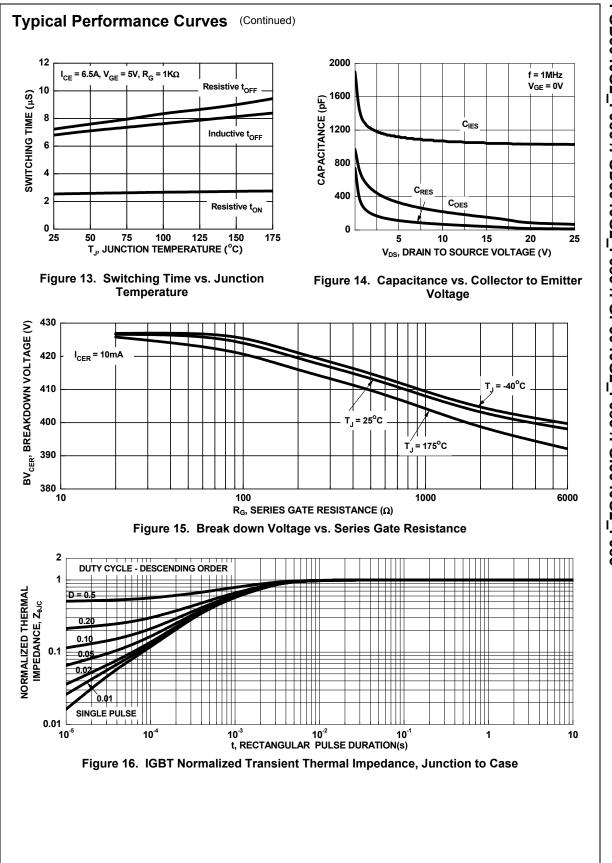
Notes:

1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I_{SCIS}=14.2A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp.

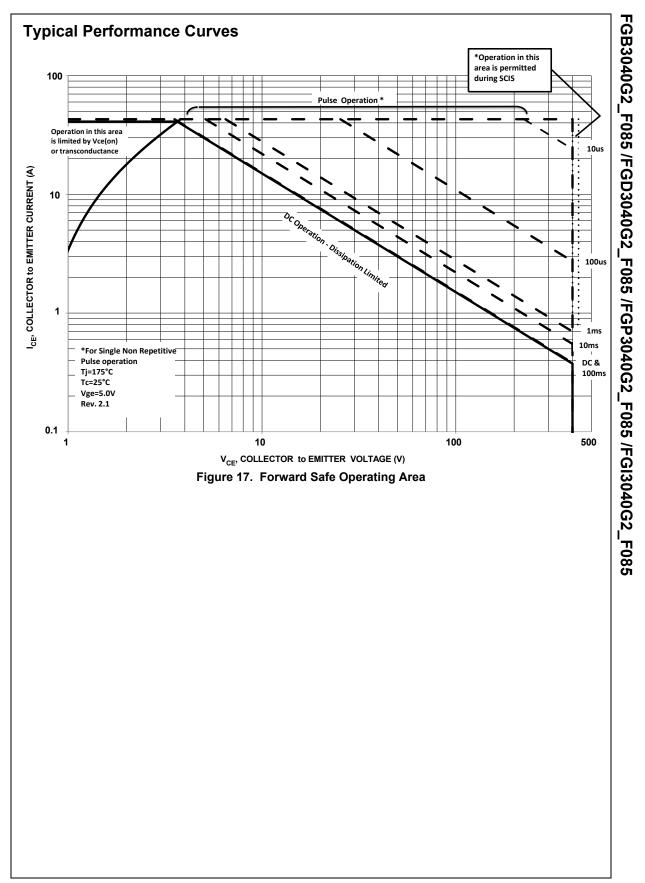

2: Self Clamping Inductive Switching Energy ($E_{SCIS150}$) of 170 mJ is based on the test conditions that starting Tj=150°C; L=3mHy, I_{SCIS}=10.8A,V_{CC}=100V during inductor charging and V_{CC}=0V during the time in clamp.

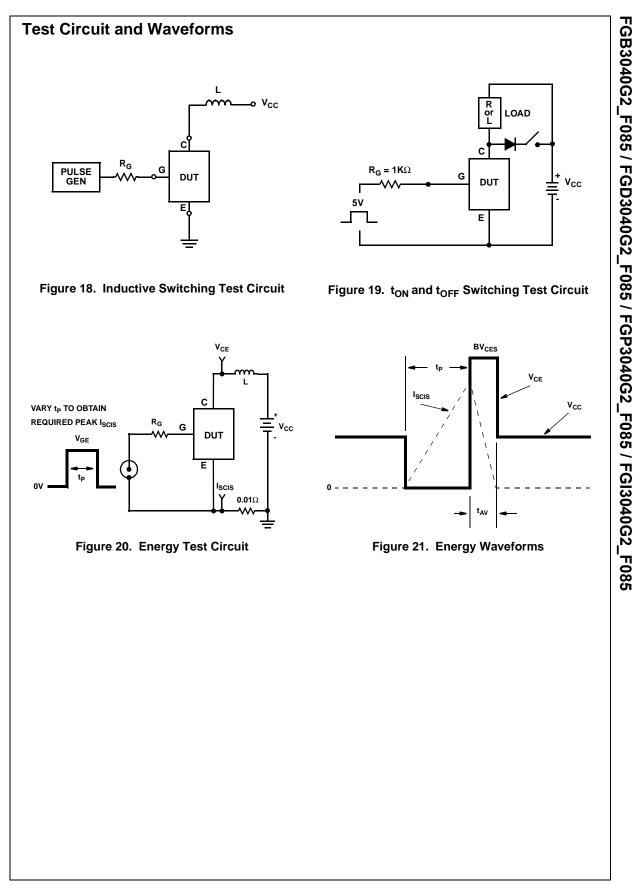

mJ °C/W

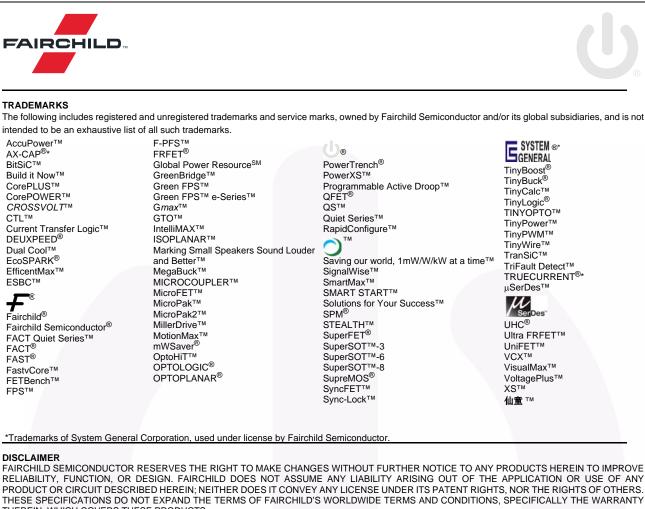
1


www.fairchildsemi.com

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Test Condi	itions	Min	Тур	Max	Units
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynam	ic Characteristics						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q _{G(ON)}	Gate Charge	$I_{CE} = 10A, V_{CE} = 12V,$ $V_{CE} = 5V$		-	21	-	nC
V_{GEP}Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ 0.73 1.2 1.0 Switching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ $ 0.9$ 4 μs t_{rR} Current Rise Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ $ 1.9$ 7 μs $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$, $ 4.8$ 15 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ $V_{GE} = 5V$, $R_G = 1K\Omega$ $ 4.8$ 15 μs	V_{GEP}Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ 0.73 1.2 1.0 Switching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ $ 0.9$ 4 μs t_{rR} Current Rise Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ $ 1.9$ 7 μs $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$, $ 4.8$ 15 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ $V_{GE} = 5V$, $R_G = 1K\Omega$ $ 4.8$ 15 μs	V_{GEP}Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ $ 2.8$ $ V$ Switching CharacteristicsSwitching Characteristics $I_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ $ 0.9$ 4 μs V_{GE} $V_{CE} = 5V$, $R_G = 1K\Omega$ $ 1.2$ 1.0 $ 0.9$ 4 μs I_{rR} Current Rise Time-Resistive $V_{CE} = 300V$, $L = 1mH$, $ 1.9$ 7 μs $I_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$, $ 4.8$ 15 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ 0.02 45 $ 0.2$ 45 $-$	V_{GEP}Gate to Emitter Plateau Voltage $V_{CE} = 12V$, $I_{CE} = 10A$ 0.73 1.2 1.0 Switching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$, $R_L = 1\Omega$ $ 0.9$ 4 μs t_{rR} Current Rise Time-Resistive $V_{CE} = 5V$, $R_G = 1K\Omega$ $ 1.9$ 7 μs $t_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V$, $L = 1mH$, $ 4.8$ 15 μs $V_{GE} = 5V$, $R_G = 1K\Omega$ $V_{GE} = 5V$, $R_G = 1K\Omega$ $ 4.8$ 15 μs	V _{GE(TH)}	Gate to Emitter Threshold Voltage						v
Switching Characteristics $i_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs i_{rR} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $i_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -0.04.5 μs	Switching Characteristics $i_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs i_{rR} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $i_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -0.04.5 μs	Switching Characteristics $i_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs i_{rR} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $i_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -0.04.5 μs	Switching Characteristics $i_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.94 μs i_{rR} Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -1.97 μs $i_{d(OFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, L = 1mH,$ -4.815 μs $V_{GE} = 5V, R_G = 1K\Omega$ $V_{GE} = 5V, R_G = 1K\Omega$ -0.04.5 μs		Gate to Emitter Plateau Voltage	V _{CE} = 12V, I _{CE} = 10A	1) = 150 C	_			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ing Characteristics						II
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	V _{CE} = 14V, R _L = 1Ω		-	0.9	4	μS
$\frac{1}{d(OFF)L} Current Turn-Off Delay Time-Inductive V_{CE} = 300V, L = 1mH, V_{GE} = 5V, R_G = 1K\Omega$	$\frac{1}{d(OFF)L} Current Turn-Off Delay Time-Inductive V_{CE} = 300V, L = 1mH, V_{GE} = 5V, R_G = 1K\Omega$	$\frac{1}{d(OFF)L} Current Turn-Off Delay Time-Inductive V_{CE} = 300V, L = 1mH, V_{GE} = 5V, R_G = 1K\Omega$	$\frac{1}{d(OFF)L} Current Turn-Off Delay Time-Inductive V_{CE} = 300V, L = 1mH, V_{GE} = 5V, R_G = 1K\Omega$	rR	Current Rise Time-Resistive	V _{GE} = 5V, R _G = 1KΩ T _J = 25°C,		-	1.9	7	μS
t_{H_L} Current Fall Time-Inductive $V_{GE} = 5V, R_G = 1K\Omega$ $I_{CE} = 6.5A, T_J = 25^{\circ}C,$ - 2.0 15 µs	r_{H_L} Current Fall Time-Inductive $V_{GE} = 5V, R_G = 1K\Omega$ $I_{CE} = 6.5A, T_J = 25^{\circ}C,$ - 2.0 15 μ s	$r_{\rm AL}$ Current Fall Time-Inductive $V_{\rm QE} = 5V, R_{\rm G} = 1K\Omega$ $I_{\rm CE} = 6.5A, T_{\rm J} = 25^{\circ}C,$ - 2.0 15 μ s	$r_{\rm rt}$ Current Fall Time-Inductive $V_{\rm GE}^{a} = 5.5$, $T_{\rm J} = 25^{\circ}$ C, -2.0 15 μ s	d(OFF)L	Current Turn-Off Delay Time-Inductive	V _{CE} = 300V, L = 1mH,		-	4.8	15	μS
				fL	Current Fall Time-Inductive	$V_{GE} = 5V, R_G = 1K\Omega$		-	2.0	15	μS






@2014 Fairchild Semiconductor Corporation FGx3040G2_F085 Rev.C4

FGB3040G2_F085 /FGD3040G2_F085 /FGP3040G2_F085 /FGI3040G2_F085

SYSTEM ®* TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ 仙童™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2 system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FGI3040G2_F085