

July 2016

FL77904 Phase-cut Dimmable Compact LED Direct AC Driver

Features

- The simplest Direct AC LED Driver with Only Two External RC Passive Components
- Wide AC Input Range: 90~305 V_{AC}
- Four Integrated High-Voltage LED Constant Current Sinks of up to 75 mA RMS Input Current Capability
- High Power Factor (above 0.98 in normal configuration) Low Harmonic Content (THD under 20% in normal configuration)
- Low Flicker Index by Self Valley Fill with No Degradation of PF and THD
- Adjustable LED Power with an External Current Sense Resistor
- TRIAC Dimmable (Leading/Trailing Edge)
- Rheostat Dimmable Flexible LED Forward Voltage Configuration
- Power Scalability with Multiple Driver ICs
- Over-Temperature Protection (OTP)
- Compact SOIC 8-Lead Package

Applications

 General LED Driving Solution for Residential, Commercial and Industrial Lighting

Description

The FL77904 is a direct AC line LED driver with a minimal number of external RC passive components. In normal configuration, one resistor adjusts LED current for desired system luminance and another bypass capacitor provides a stable voltage to an internal biasing shunt regulator.

The FL77904 provides phase-cut dimming with wide dimming range, smooth dimming control and good dimmer compatibility. Optimized levels of each LED strings' current regulation achieve over 0.98 high PF and less than 20% low THD which makes the FL77904 suitable for high-efficiency LED lighting systems. The FL77904 can be also used with a simple rheostat dimmer switches which are suitable for desktop or indoor lamps.

Flicker index is significantly improved by using proprietary self valley fill technique without degrading PF and THD. The cost effective solution brings low line ripple light quality with system compactness.

Operation of FL77904 admits driving higher-wattage systems, such as street lights and down lights, by simply parallel connecting the driver ICs.

Ordering Information

Dort Number	Operating	Dookono	Packing
Part Number	Temperature Range	Package	Method
FL77904MX	-40 to 125°C	8-Lead, Small Outline Integrated Circuit (SOIC) JEDEC MS012 150" Narrow Body, Exposed Pad	2,500 per Reel

Typical Application

Figure 1. Typical Application Schematic

Block Diagram

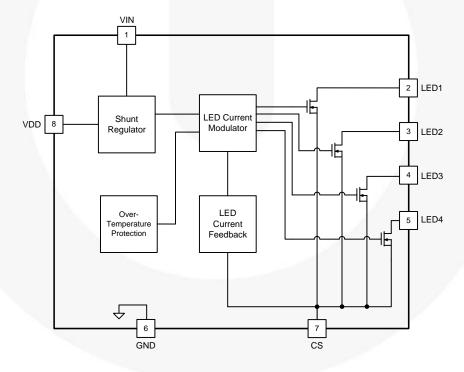


Figure 2. Simplified FL77904 Block Diagram

Pin Configuration

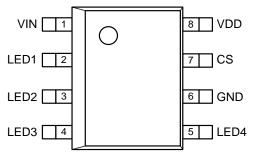


Figure 3. Pin Configuration (Top View)

Thermal Characteristics (1)(2)

Component	Package	Θ _{JA} (1S PCB)	Θ _{JA} (2S2P PCB)	Units	
FL77904MX	8-Lead, Small Outline Integrated Circuit (SOIC) JEDEC MS012 150" Narrow Body, Exposed Pad	156	37	°C/W	

Notes:

- ⊕ JA: Thermal resistance between junction and ambient, dependent on the PCB design, heat sinking, and airflow.
 The value given is for natural convection with no heatsink using the 1S and 2S2P boards, as specified in JEDEC standards JESD51-2, JESD51-5, and JESD51-7, as appropriate.
- 2. Junction-to-ambient thermal resistance is highly dependent on application and PCB layout. In application where the device dissipates high levels of power during operation, special care of thermal dissipation issues in PCB design must be taken.

Pin Definitions

Pin#	Name	Description	
1	VIN	Rectified AC Input Voltage. Connect this pin to rectified AC voltage after a bridge rectifier.	
2	LED1		
3	LED2	LED String Cathodos Connect authodo(a) of each LED group to those nine	
4	LED3	LED String Cathodes. Connect cathode(s) of each LED group to these pins.	
5	LED4		
6	GND	Ground Reference Pin . Tie this pin directly to local ground plane. This ground should not be tied to earth ground because it is not isolated from AC mains.	
7	CS	LED Current Sense. Limits the LED current depending on voltage across sensing resistor. The CS pin is used to set the LED current regulation target.	
8	VDD	Internal Biasing Shunt Regulator Output. This pin supplies current to internal circuitry. A 17-V shunt regulator is internally connected to this pin. A bypassing capacitor is recommended to be added to reduce noise from VIN.	
0	EP	Exposed Thermal Pad . EP is not tied to GND inside the IC. It is recommended to tie it to GND externally.	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	VIN Voltage	-0.3	500	V
V _{LED1}	LED1 Pin Voltage	-0.3	500	V
V _{LED2}	LED2 Pin Voltage	-0.3	500	V
V _{LED3}	LED3 Pin Voltage	-0.3	500	V
V _{LED4}	LED4 Pin Voltage	-0.3	200	V
Vcs	CS Pin Voltage	-0.3	6	V
TJ	Junction Temperature	-55	+150	°C
T _{STG}	Storage Temperature	-65	+150	°C
I _{LED1}	LED1 Current		60	mA
I _{LED2}	LED2 Current		80	mA
I _{LED3}	LED3 Current		100	mA
I _{LED4}	LED4 Current		150	mA

Notes:

- 3. Stress beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.
- 4. All voltage values, except differential voltages, are given with respect to the GND pin.
- 5. Human Body Model, ANSI/ESDA/JEDEC JS-001-2012: 0.8 kV at Pins 1~4, 0.4 kV at Pin 5, 1.5 kV at Pins 7~8.
- 6. Charged Device Model, JESD22-C101: 1.0 kV at Pins 1~8.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Tj	Operating Junction Temperature		+125	°C

Electrical Characteristics

Unless otherwise noted, R_{CS} = 10 Ω , and T_A = 25°C. Currents are defined as positive into the device and negative out of the device.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VIN Supply						
I _{QUIES.VIN}	V _{IN} Quiescent Current	V _{IN} = 500 V Maximum		0.75	1.20	mA
VDD Output		•				
V_{DD}	VDD Voltage	V _{IN} = 20.0 V	16	17	18	V
LED Current	t	•				
I _{LED1}	LED1 Current	V _{IN} = 20.0 V, V _{LED1} = 20.0 V	17.4	23.0	28.6	mA
I _{LED2}	LED2 Current	V _{IN} = 20.0 V, V _{LED2} = 20.0 V	40.4	47.0	53.6	mA
I _{LED3}	LED3 Current	V _{IN} = 20.0 V, V _{LED3} = 35.0 V	78.2	86.0	93.8	mA
I _{LED4}	LED4 Current	$V_{IN} = 20.0 \text{ V}, V_{LED4} = 20.0 \text{ V}$	87.8	96.0	104.2	mΑ
Over-Tempe	erature Protection	•				
T _{OTP}	OTP Temperature ⁽⁷⁾			170		°C
Leakage Current						
I _{LED1-LK}	LED1 Leakage Current	V _{LED1} = 500 V, V _{IN} = 0 V			1	μΑ
I _{LED2-LK}	LED2 Leakage Current	V _{LED2} = 500 V, V _{IN} = 0 V			1	μΑ
I _{LED3-LK}	LED3 Leakage Current	V _{LED3} = 500 V, V _{IN} = 0 V			1	μΑ
I _{LED4-LK}	LED4 Leakage Current	V _{LED4} = 200 V, V _{IN} = 0 V			1	μΑ

Notes:

^{7.} Not tested in production. Internal over-temperature protection circuitry protects the device from permanent damage. LEDs shut down at the junction temperature of $T_J=170^{\circ}C$ (typical.).

Typical Performance Characteristics

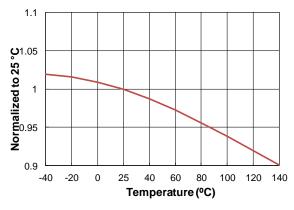


Figure 4. I_{QUIES.VIN} vs. Temperature

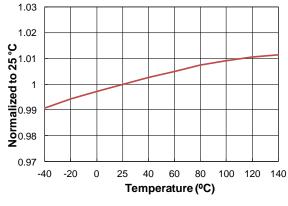


Figure 5. V_{DD} vs. Temperature

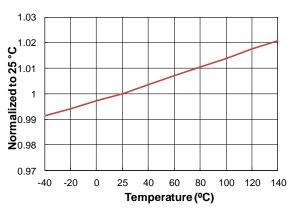


Figure 6. I_{LED1} vs. Temperature

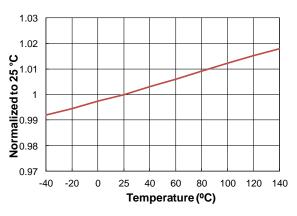


Figure 7. I_{LED2} vs. Temperature

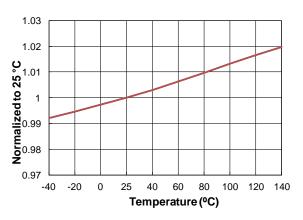
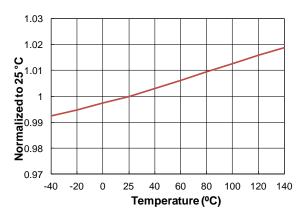
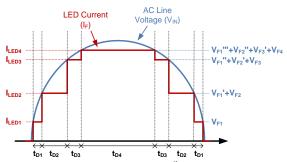


Figure 8. I_{LED3} vs. Temperature




Figure 9. I_{LED4} vs. Temperature

Functional Description

The FL77904 can drive LED strings attached directly to the rectified AC mains using only two external RC components (R_{CS} and C_{VDD}). With 4 integrated high voltage current sink, LED current in each string is precisely controlled with system compactness. High PF and low THD are obtained by the optimized current sink levels. Phase-cut dimming is easily obtained with wide dimming range and good dimmer compatibility. Flicker index in the direct AC drive topology can be improved by adopting proprietary self valley-fill solution.

Operation

When the rectified AC line voltage, V_{IN} , is higher than the forward voltage of the consecutive LED groups. each LED group turns on automatically as the corresponding current sink has enough voltage headroom across it. Each current sink increases up to the predefined current level and maintains the level until the following channel current sink gets enough voltage headroom across it.

- t_{D1}: Current is directed to LED1 pin through 1st LED group.
 t_{D2}: Current is directed to LED2 pin through 1st and 2nd LED groups.
 t_{D3}: Current is directed to LED3 pin through 1st, 2nd, and 3rd LED groups.
 t_{D4}: Current is directed to LED4 pin through 1st, 2nd, 3rd, and 4th LED groups.
- V_{F1}/V_{F1}'/V_{F1}"/V_{F1}": Forward voltage at forward current of I_{LED1}/I_{LED2}/I_{LED3}/I_{LED4}
- in 1^{st} LED group. $V_{F2}/V_{F2}'/V_{F2}''$: Forward voltage at forward current of $I_{LED2}/I_{LED3}/I_{LED4}$ in 2^{nd} LED
- V_{F3}/V_{F3}: Forward voltage at forward current of I_{LED3}/I_{LED4} in 3rd LED group. V_{F4}: Forward voltage at forward current of I_{LED4} in 4th LED group.

Figure 10. FL77904 Operation

When V_{IN} reaches the forward voltage across the 1st LED group (V_{F1}) at forward current $I_F = I_{LED1}$, the current drawn from the V_{IN} is directed to the LED1 through the 1st LED group. In sequence, when V_{IN} reaches forward voltage across the 1st and 2nd LED groups (VF1'+VF2) at $I_F = I_{LED2}$, the current is directed to LED2 across the 1st and 2nd LED groups. Then, when V_{IN} reaches V_{F1}"+V_{F2}'+V_{F3} at I_F=I_{LED3}, the LED current go through 1st, 2nd, and 3rd LED groups and sinks to the LED3. Finally, when V_{IN} reaches V_{F1}"'+V_{F2}"+V_{F3}'+V_{F4} at I_F=I_{LED4}, the current goes through all 4 LED groups and is directed to the LED4.

Whenever the active channel (one that is sinking LED current) is changed from one channel to the adjacent channel with respect to the change in the V_{IN}, the new active channel's current increases gradually while the existing active channel's current decreases gradually. This smooth current transition reduces frequency harmonic contents and improves power factor as well as Electromagnetic Interference (EMI) characteristics.

By fully utilizing available headroom, the FL77904 offers high efficiency, power factor and low harmonic distortion. Typically, power factor is higher than 0.98 and THD is lower than 20%. The efficiency heavily depends on a LED configuration.

LED Current and Power Setting

The LED current is managed by an external current sense resistor Rcs. Regulation target of each channel's current sink is calculated as follows.

$$I_{LED1} = \frac{0.23}{R_{CS}}, I_{LED2} = \frac{0.47}{R_{CS}},$$

$$I_{LED3} = \frac{0.86}{R_{CS}}, \text{ and } I_{LED4} = \frac{0.96}{R_{CS}}.$$
(1)

Root-mean-square (RMS) value of the input current can be calculated using the peak regulated current, I_{LED4}, and crest factor. Since the LED current waveform is similar to the AC line voltage, the crest factor is close to the crest factor of a sine wave, $\sqrt{2}$ =1.414. But the actual crest factor depends on the flattened time of the ILED4 and LED configuration. With FL77904, the typical crest factor is approximately 1.35. Thus, based on estimated input power, PIN, the RCS resistor value can be calculated as follows.

$$R_{CS} = \frac{0.96 \times V_{AC.RMS}}{1.35 \times P_{IN}} \tag{2}$$

The actual R_{CS} needs to be adjusted with respect to the LED configuration.

LED Configuration

In the LED configuration, it is required to increase the total LED forward voltage to improve efficiency. For example, compared to using 4 LEDs with V_F of 60 V (total $V_F = 60 \text{ V} \times 4 \text{ channels} = 240 \text{ V}$) for each LED group, using 4 LEDs with V_F equal to 65 V (total V_F = 65 V x 4 channels = 260 V) will improve the efficiency simply due to the higher total V_F. Each LED channel can have different V_F. For example, if a design is implemented with 144 pieces of 3-V LEDs for replacement of 2-feet fluorescent lamp, designer can assign flexible numbers of LEDs for LED channels such as 25s2p-32s2p-6s2p-18s1p ("s" stands for LEDs in series and "p" stands for LEDs in parallel) or 18s2p-18s2p-18s2p-36s1p.

In any LED structure, V_F of first LED group should be higher than VIN-pin turn-on voltage, which is 20 V. If the V_F of the first LED group is configured to be lower than VIN-pin turn-on voltage, I_{LED1} will not have the correct regulation level when input voltage, V_{IN}, is just exceeds the V_F.

A good starting point for choosing a LED configuration is to have about 260 V~280 V of the total V_F for 220 V_{AC} mains and 130 V~140 V of the total V_F for 120 V_{AC} .

Internal Shunt Regulator Output, V_{DD}

The system implemented with FL77904 does not require a bulk capacitor after bridge-rectification diodes. As a result, the V_{DD} , which supplies biasing voltage for the FL77904, has voltage ripple like the rectification voltage after the bridge diodes as shown in Figure 11.

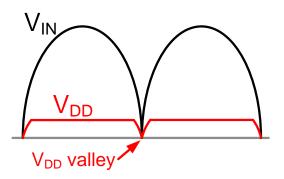
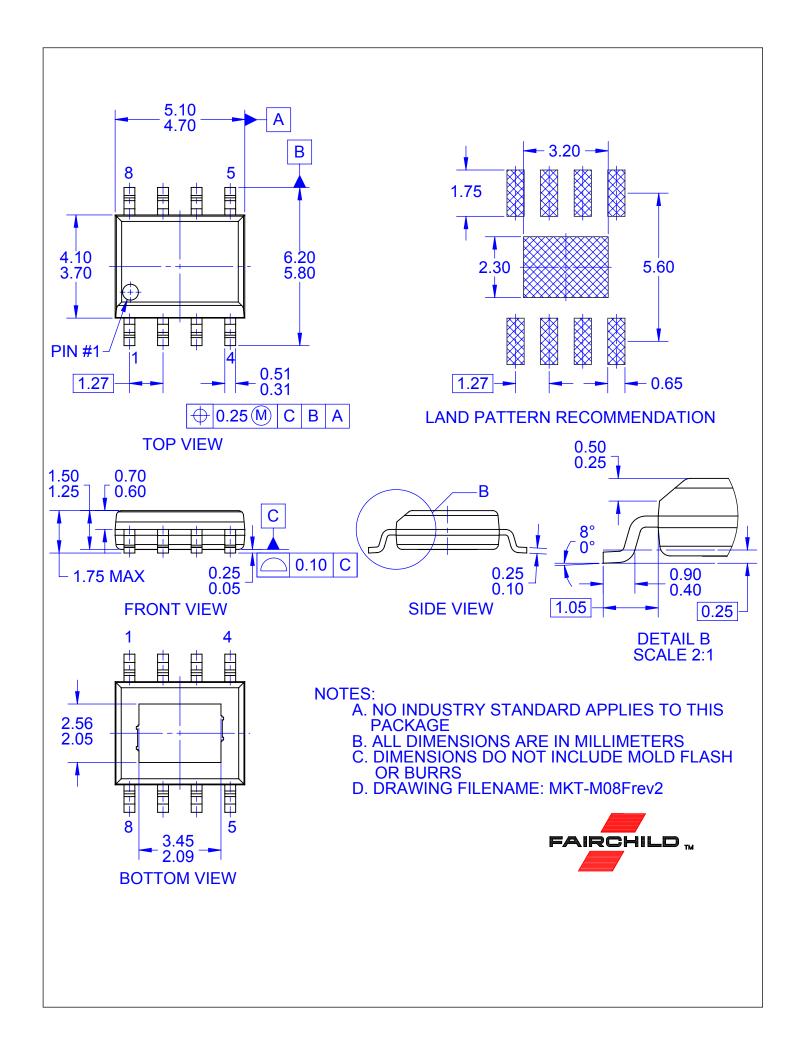



Figure 11. V_{DD} Ripple without C_{VDD}

The V_{DD} ripple can be reduced by a bypassing capacitor, C_{VDD} . If the C_{VDD} is not used, or its value is small, the V_{DD} voltage fluctuates and goes even down to 0 V. It makes the FL77904 reset, but the FL77904 automatically restarts every cycle when the AC line voltage reaches a certain level. General design suggestion is to add C_{VDD} for noise filtering. The recommended C_{VDD} value is 1 μF with 50 V of voltage rating.

Over-Temperature Protection (OTP)

The FL77904 provides over temperature protection (OTP) inherently. When the driver's junction temperature exceeds a specified threshold temperature ($T_J = 170\,^{\circ}$ C), the driver will shut down automatically and recover once the temperature drops lower enough than the internal threshold temperature. Without this protection, the lifetime of the FL77904 can be reduced and irreparable damage can occur. Good thermal management is required to achieve best performance and long life span of the FL77904.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms				
Datasheet Identification		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FL77904MX