

Is Now Part of

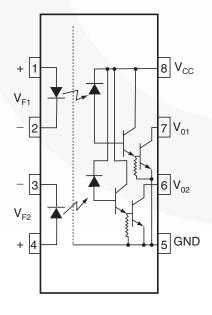
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

April 2009

FOD073L LVTTL/LVCMOS Compatible Low Input Current High Gain Split Darlington Optocoupler


Features

- Low power consumption
- Low input current: 0.5mA
- Dual channel 8-pin SOIC package
- High CTR: 400% minimum
- High CMR: 10kV/µs
- Guaranteed performance over temperature 0°C to 70°C
- U.L. recognized (File # E90700)
- LVTTL/LVCMOS Compatible output

Applications

- Digital logic ground isolation LVTTL/LVCMOS
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- µP bus isolation
- Current loop receiver

Schematic

Description


The FOD073L optocoupler consists of an AlGaAs LED optically coupled to a high gain split darlington photodetector. This device is specified to operate at a 3.3V supply voltage.

An integrated emitter – base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5mA and a high current transfer ratio of 2000% (typical) makes this device particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to LVCMOS as well as high fan-out LVTTL requirements.

An internal noise shield provides exceptional common mode rejection of 10kV/µs.

Package Outline

Truth Table

LED	vo
ON	LOW
OFF	HIGH

Absolute Maximum Ratings (No derating required up to 85°C)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Parameter				
T _{STG}	Storage Temperature		-40 to +125	°C		
T _{OPR}	Operating Temperature		-40 to +85	°C		
T _{SOL}	Lead Solder Temperature (Wave solder only. See reflow profile for surface mou	nt devices)	260 for 10 sec	°C		
EMITTER						
I _F (avg)	DC/Average Forward Input Current	Each Channel	20	mA		
I _F (pk)	Peak Forward Input Current (50% duty cycle, 1ms P.W.)	Each Channel	40	mA		
I _F (trans)	Peak Transient Input Current (≤1µs P.W., 300 pps)	Each Channel	1.0	А		
V _R	Reverse Input Voltage	Each Channel	5	V		
PD	Input Power Dissipation	Each Channel	35	mW		
DETECTOR			<u> </u>			
l _O (avg)	Average Output Current	Each Channel	60	mA		
V _{EB}	Emitter-Base Reverse Voltage (FOD070L, FOD270L)	Each Channel	0.5	V		
V_{CC}, V_O	Supply Voltage, Output Voltage	Each Channel	-0.5 to 7	V		
PD	Output power dissipation	Each Channel	100	mW		

Electrical Characteristics ($T_A = 0$ to 70°C unless otherwise specified)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.*	Max.	Unit
EMITTER						
V _F	Input Forward Voltage	T _A =25°C		1.35	1.7	V
		I _F = 1.6mA (Each Channel)			1.75	
BV _R	Input Reverse Breakdown Voltage	T _A =25°C, I _R = 10μA (Each Channel)	5.0			V
DETECTO	DR					
I _{OH}	Logic High Output Current	$I_F = 0 \text{ mA}, V_O = V_{CC} = 3.3 \text{V}$ (Each Channel)		0.05	25	μA
I _{CCL}	Logic Low Supply Current	$I_{F1} = I_{F2} = 1.6 \text{mA},$ $V_{O1} = V_{O2} = \text{Open}, V_{CC} = 3.3 \text{V}$		0.8	3	mA
ICCH	Logic High Supply Current	$I_{F1} = I_{F2} = 0mA,$ $V_{O1} = V_{O2} = Open, V_{CC} = 3.3V$		0.01	2	μA

Transfer Characteristics

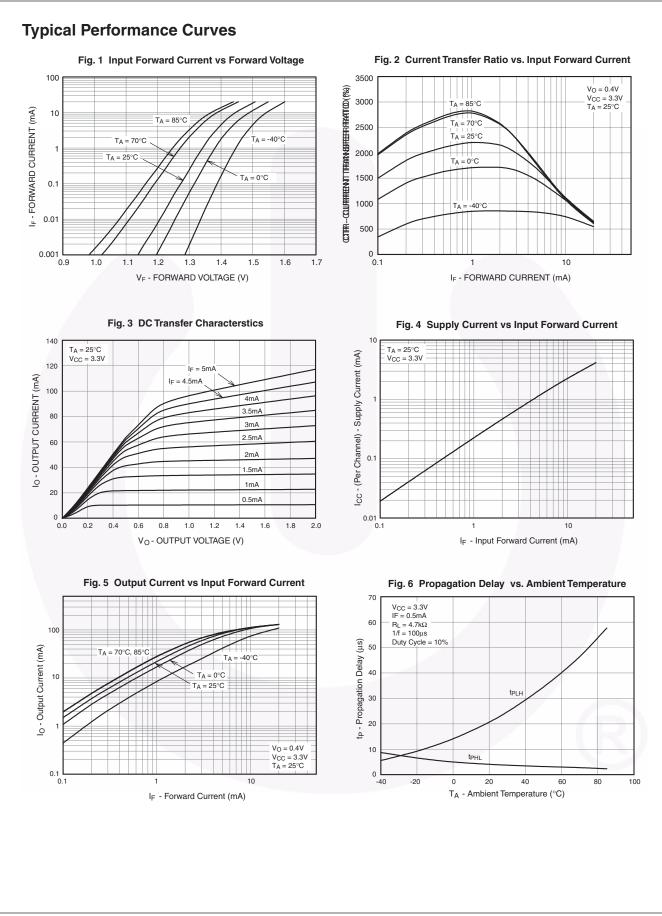
Symbol	Parameter		Test Conditions	Min.	Тур.*	Max.	Unit
CTR	COUPLED Current Transfer Ratio (Note 1)	I _F =	0.5mA, V _O = 0.4V, V _{CC} = 3.3V	400		7000	%
V _{OL}	Logic Low Output Voltage	I _F =	$1.6mA, I_{O} = 8mA, V_{CC} = 3.3V$		0.07	0.3	V
		I _F =	5mA, I_{O} = 15mA, V_{CC} = 3.3V		0.07	0.4	

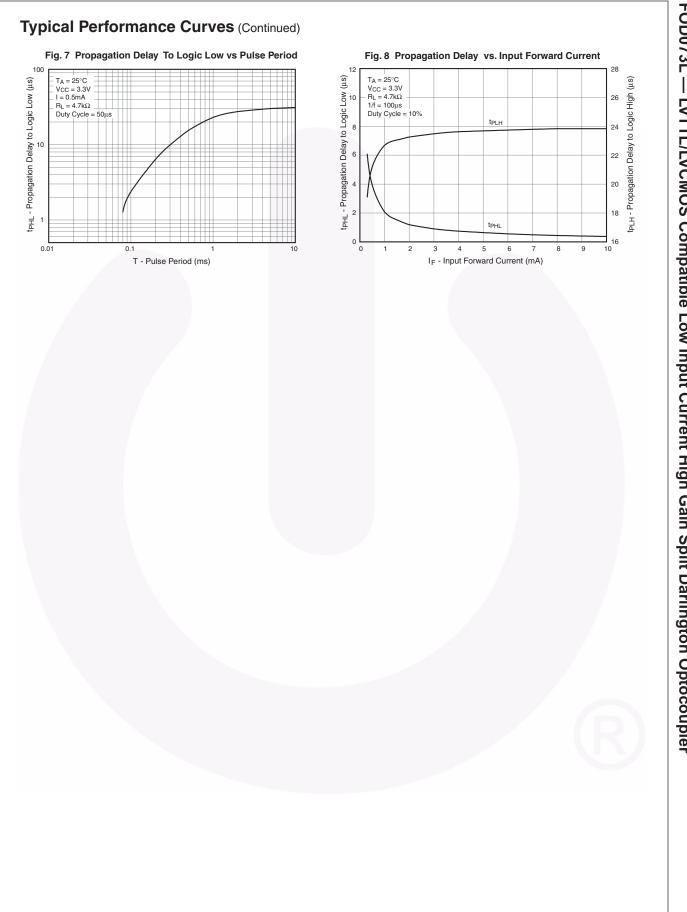
Switching Characteristics (V_{CC} = 3.3 V)

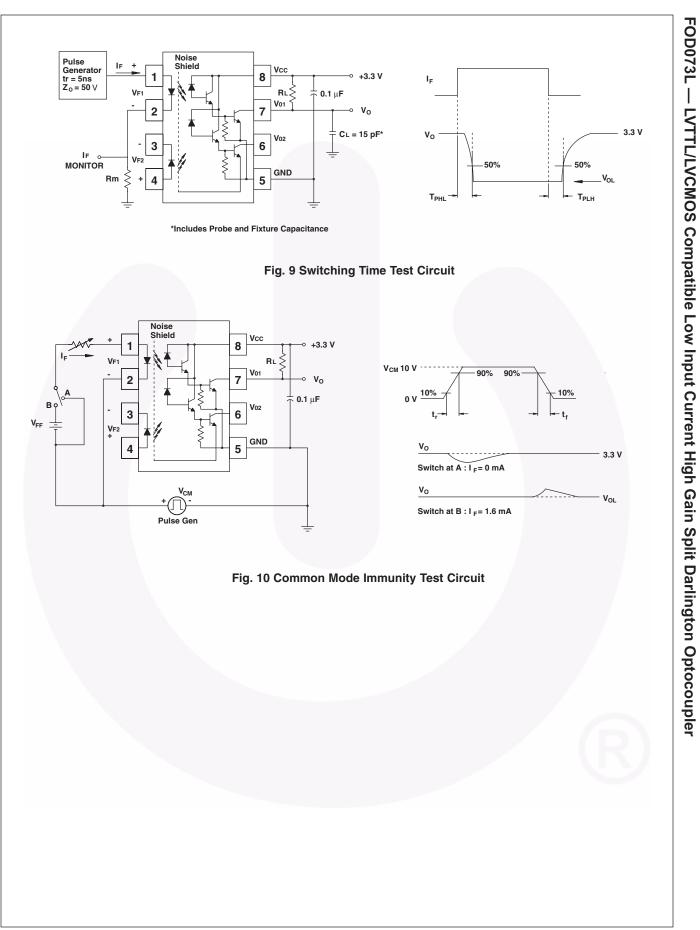
Symbol	Parameter	Test Conditions	Min.	Тур.*	Max.	Unit
T _{PHL}	Propagation Delay Time to Logic LOW	$\begin{array}{l} R_{L}=4.7\mathrm{k}\Omega,\ I_{F}=0.5\mathrm{m}A\\ (Fig.~9) \end{array}$		5	30	μs
T _{PLH}	Propagation Delay Time to Logic HIGH	$R_L = 4.7$ kΩ, $I_F = 0.5$ mA (Fig. 9)		25	90	μs
ICM _H I	Common Mode Transient Immunity at Logic HIGH	$ I_{F} = 0 \text{ mA, } V_{CM} = 10 V_{P-P}, T_{A} = 25^{\circ}\text{C}, \\ R_{L} = 2.2 \text{k}\Omega \text{ (Note 2) (Fig. 10)} $	1,000	10,000		V/µs
ICMLI	Common Mode Transient Immunity at Logic LOW	$\begin{split} I_{\text{F}} &= 1.6\text{mA}, V_{\text{CM}} = 10 \; V_{\text{P-P}}, \; \text{R}_{\text{L}} = 2.2 \text{k} \Omega, \\ T_{\text{A}} &= 25^{\circ}\text{C} \; \; (\text{Note 2}) \; (\text{Fig. 10}) \end{split}$	1,000	10,000		V/µs

*All typicals at $T_A = 25^{\circ}C$

Electrical Characteristics (Continued) ($T_A = 0$ to 70°C unless otherwise specified)

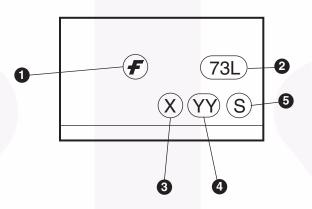

Isolation Characteristics

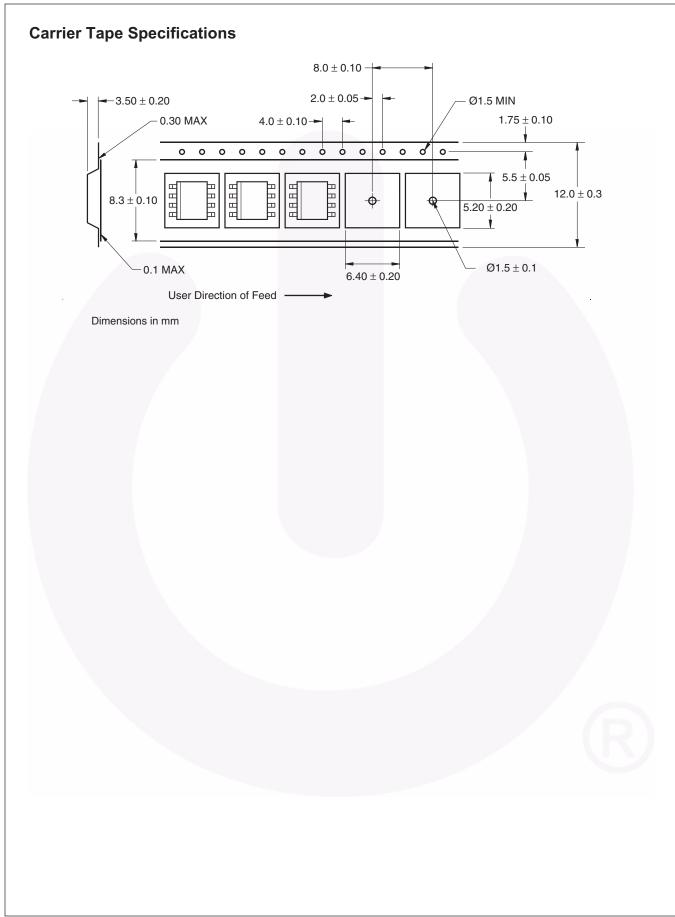

Symbol	Characteristics	Test Conditions	Min.	Тур.*	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	Relative humidity = 45%, $T_A = 25^{\circ}C$, t = 5 s, $V_{I-O} = 3000$ VDC (Note 3)			1.0	μA
V _{ISO}	Withstand Insulation Test Voltage	$\label{eq:rescaled} \begin{array}{l} R_{H} \leq 50\%, T_{A} = 25^{\circ}C, I_{I-O} \leq 2\mu A, \\ t = 1 \mbox{ min. (Note 3)} \end{array}$	2500			V _{RMS}
R _{I-O}	Resistance (Input to Output)	V _{I-O} = 500 VDC (Note 3)		10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output)	f = 1 MHz (Notes 3, 4)		0.7		pF
I _{I-I}	Input-Input Insulation Leakage Current	$RH \le 45\%$, $V_{I-I} = 500 VDC$ (Note 5)	0.005			μA
R _{I-I}	Input-Input Resistance	V _{I-I} = 500 VDC (Note 5)		10 ¹¹		Ω
C _{I-I}	Input-Input Capacitance	f = 1 MHz (Note 5)		0.03		pF

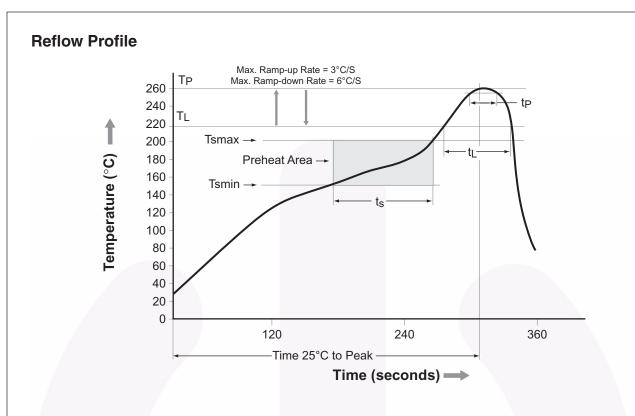

*All typicals at $T_A = 25^{\circ}C$

Notes:

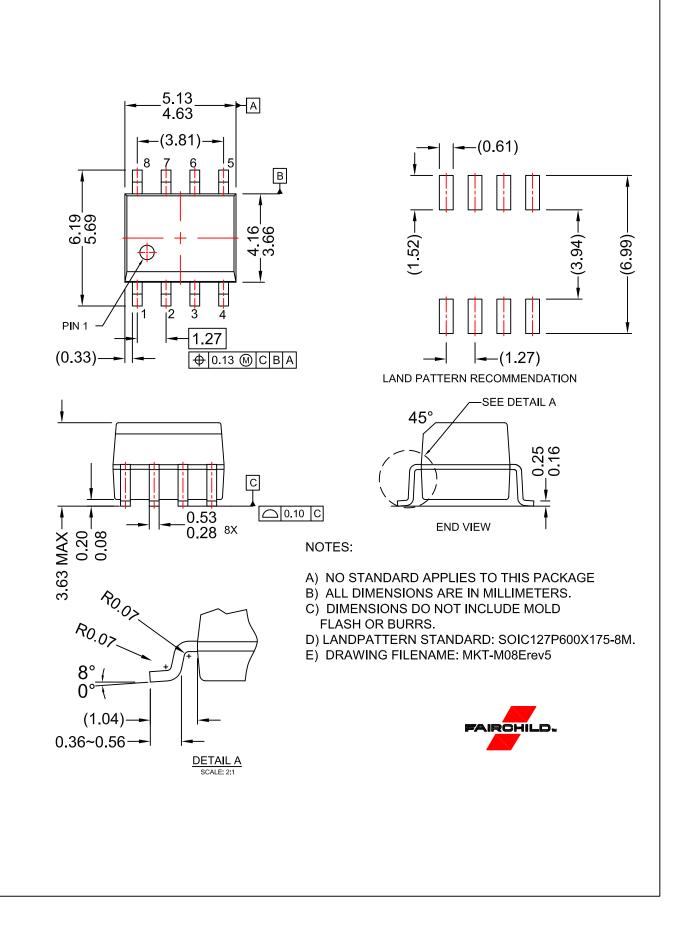
- 1. Current Transfer Ratio is defined as a ratio of output collector current, I_O, to the forward LED input current, I_F times 100%.
- 2. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0V$). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8 V$).
- 3. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 4. CI-O is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
- 5. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

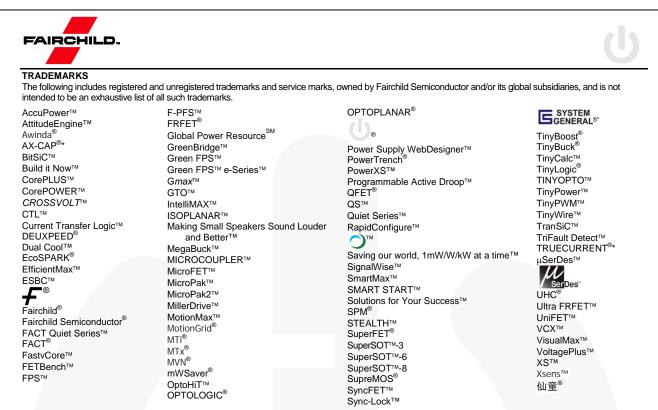



Ordering Information


Option	Order Entry Identifier	Description
No Suffix	FOD073L	Shipped in tubes (50 units per tube)
R2	FOD073LR2	Tape and reel (2,500 units per reel)

Marking Information




	Definitions					
1	Fairchild logo					
2	Device number					
3	One digit year code, e.g., '3'					
4	Two digit work week ranging from '01' to '53'					
5	Assembly package code					

Profile Freature	Pb-Free Assembly Profile		
Temperature Min. (Tsmin)	150°C		
Temperature Max. (Tsmax)	200°C		
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds		
Ramp-up Rate (t _L to t _P)	3°C/second max.		
Liquidous Temperature (T _L)	217°C		
Time (t_L) Maintained Above (T_L)	60–150 seconds		
Peak Body Package Temperature	260°C +0°C / -5°C		
Time (t _P) within 5°C of 260°C	30 seconds		
Ramp-down Rate (T _P to T _L)	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fodo73L FOD073LR2