

Is Now Part of

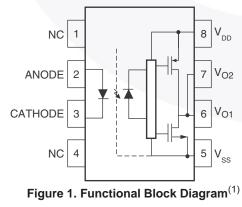
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

February 2016

FOD3120 High Noise Immunity, 2.5 A Output Current, Gate Drive Optocoupler


Features

- High Noise Immunity Characterized by 35 kV/µs Minimum Common Mode Rejection
- 2.5 A Peak Output Current Driving Capability for Most 1200 V/20 A IGBT
- Use of P-channel MOSFETs at Output Stage Enables Output Voltage Swing Close to The Supply Rail
- Wide Supply Voltage Range from 15 V to 30 V
- Fast Switching Speed
 - 400 ns max. Propagation Delay
 - 100 ns max. Pulse Width Distortion
- Under Voltage LockOut (UVLO) with Hysteresis
- Extended Industrial Temperate Range, -40°C to 100°C Temperature Range
- Safety and Regulatory Approved
 UL1577, 5000 V_{RMS} for 1 min.
 - DIN EN/IEC60747-5-5
- R_{DS(ON)} of 1 Ω (typ.) Offers Lower Power Dissipation
- >8.0 mm Clearance and Creepage Distance (Option 'T' or 'TS')
- 1,414 V Peak Working Insulation Voltage (VIORM)

Applications

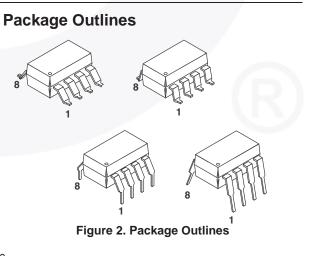
- Industrial Inverter
- Uninterruptible Power Supply
- Induction Heating
- Isolated IGBT/Power MOSFET Gate Drive

Functional Block Diagram

Note:

1. 0.1 μ F bypass capacitor must be connected between pins 5 and 8.

Description


The FOD3120 is a 2.5 A Output Current Gate Drive Optocoupler, capable of driving most medium power IGBT/MOSFET. It is ideally suited for fast switching driving of power IGBT and MOSFETs used in motor control inverter applications, and high performance power system.

It utilizes Fairchild's coplanar packaging technology, Optoplanar[®], and optimized IC design to achieve high noise immunity, characterized by high common mode rejection.

It consists of a gallium aluminum arsenide (AlGaAs) light emitting diode optically coupled to an integrated circuit with a high-speed driver for push-pull MOSFET output stage.

Related Resources

- FOD3150, 1 A Output Current, Gate Drive Optocoupler Datasheet
- www.fairchildsemi.com/products/optoelectronics/

Truth Table

LED	V _{DD} -V _{SS} "Positive Going" (Turn-on)	V _{DD} -V _{SS} "Negative Going" (Turn-off)	v _o
Off	0 V to 30 V	0 V to 30 V	Low
On	0 V to 11.5 V	0 V to 10 V	Low
On	11.5 V to 13.5 V	10 V to 12 V	Transition
On	13.5 V to 30 V	12 V to 30 V	High

Pin Definitions

Pin #	Name	Description
1	NC	Not Connected
2	Anode	LED Anode
3	Cathode	LED Cathode
4	NC	Not Connected
5	V _{SS}	Negative Supply Voltage
6	V _{O2}	Output Voltage 2 (internally connected to V _{O1})
7	V _{O1}	Output Voltage 1
8	V _{DD}	Positive Supply Voltage

©2 FC

2003 Fairchild Semiconductor Corporation	
OD3120 Rev. 1.4	

www.fairchildsemi.com

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
	< 150 V _{RMS}	I–IV
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
	< 450 V _{RMS}	I–III
	< 600 V _{RMS}	I–III
	< 1000 V _{RMS} (Option T, TS)	I–III
Climatic Classification		40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
M	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	2,262	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 \text{ s}$, Partial Discharge < 5 pC	2,651	V _{peak}
VIORM	Maximum Working Insulation Voltage	1,414	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6,000	V _{peak}
	External Creepage	≥ 8.0	mm
	External Clearance	≥ 7.4	mm
	External Clearance (for Option T or TS, 0.4" Lead Spacing)	≥ 10.16	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
Τ _S	Case Temperature ⁽²⁾	175	°C
I _{S,INPUT}	Input Current ⁽²⁾	400	mA
P _{S,OUTPUT}	Output Power (Duty Factor $\leq 2.7\%$) ⁽²⁾	700	mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 $V^{(2)}$	> 10 ⁹	Ω

Note:

2. Safety limit value - maximum values allowed in the event of a failure.

Absolute Maximum Ratings (T_A = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramete	er	Value	Unit
T _{STG}	Storage Temperature		-55 to +125	°C
T _{OPR}	Operating Temperature		-40 to +100	°C
TJ	Junction Temperature		-40 to +125	°C
T _{SOL}	Lead Wave Solder Temperature (refer to page 21 for reflow solder	profile)	260 for 10sec	°C
I _{F(AVG)}	Average Input Current		25	mA
I _{F(PEAK)}	Peak Transient Forward Current ⁽³	3)	1	А
f	Operating Frequency ⁽⁴⁾		50	kHz
V _R	Reverse Input Voltage		5	V
I _{O(PEAK)}	Peak Output Current ⁽⁵⁾		3.0	А
	Supply Voltage		0 to 35	V
$V_{DD} - V_{SS}$	Supply Voltage	$T_A \ge 90^{\circ}C$	0 to 30	v
V _{O(PEAK)}	Peak Output Voltage		0 to V _{DD}	V
t _{R(IN)} , t _{F(IN)}	Input Signal Rise and Fall Time		500	ns
PDI	Input Power Dissipation ⁽⁶⁾⁽⁸⁾		45	mW
PD _O	Output Power Dissipation ⁽⁷⁾⁽⁸⁾		250	mW

Notes:

3. Pulse Width, $P_W \leq 1~\mu s,\,300~pps$

- 4. Exponential Waveform, $I_{O(PEAK)} \le | 2.5 \text{ A} | (\le 0.3 \text{ } \mu\text{s})$
- 5. Maximum pulse width = 10 µs, maximum duty cycle = 1.1%
- 6. Derate linearly above 87°C, free air temperature at a rate of 0.77 mW/°C
- 7. No derating required across temperature range.
- 8. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature	-40 to +100	°C
$V_{DD} - V_{SS}$	Power Supply	15 to 30	V
I _{F(ON)}	Input Current (ON)	7 to 16	mA
V _{F(OFF)}	Input Voltage (OFF)	0 to 0.8	V

Isolation Characteristics

Apply over all recommended conditions, typical value is measured at $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	$ \begin{array}{l} T_{A} = 25^{\circ}C, \ R.H. < 50\%, \ t = 1.0min, \\ I_{I-O} \leq 10 \ \mu A, \ 50 \ Hz^{(9)(10)} \end{array} $	5,000			V _{RMS}
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 V^{(9)}$		10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = 0 V$, Freq = 1.0 MHz ⁽⁹⁾		1		pF

Notes:

9. Device is considered a two terminal device: Pins 2 and 3 are shorted together and Pins 5, 6, 7 and 8 are shorted together.

10. 5,000 V_{RMS} for 1 minute duration is equivalent to 6,000 VAC_{RMS} for 1 second duration.

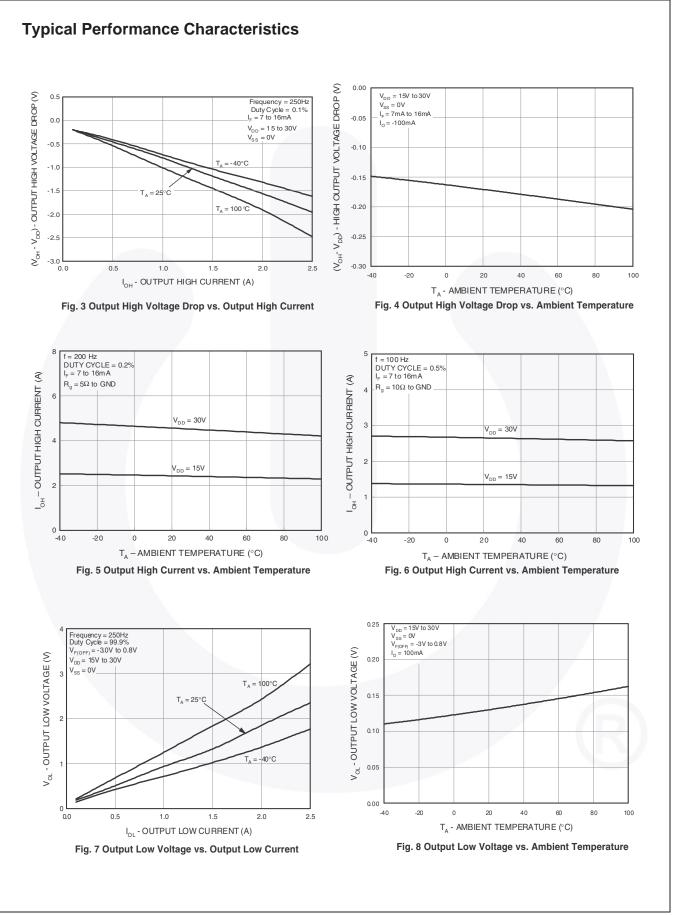
Electrical Characteristics

Apply over all recommended conditions, typical value is measured at V_{DD} = 30 V, V_{SS} = Ground, T_A = 25°C unless otherwise specified.

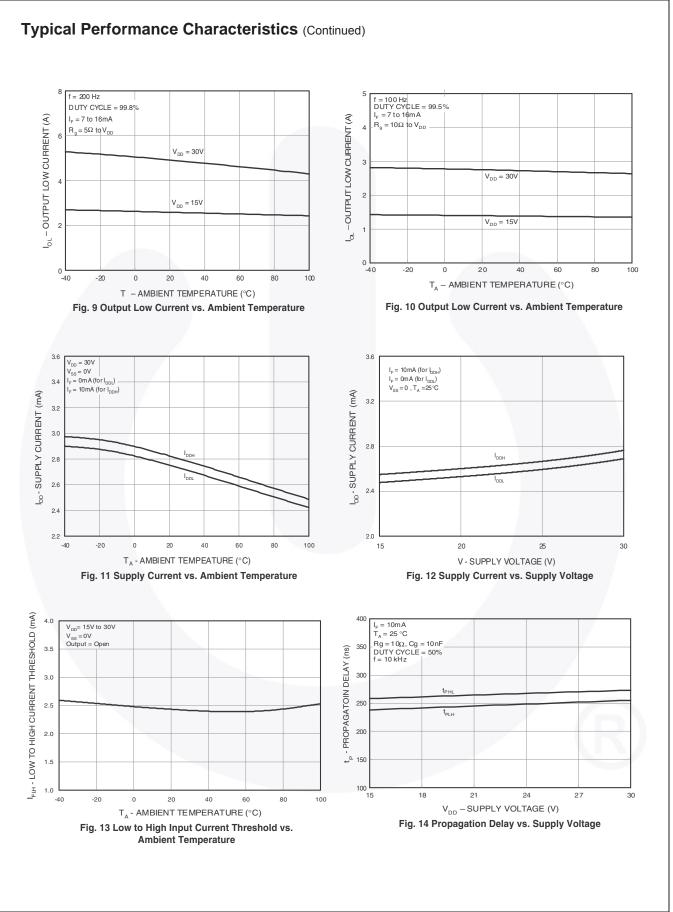
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
V _F	Input Forward Voltage	I _F = 10 mA	1.2	1.5	1.8	V	
$\Delta(V_{F} / T_{A})$	Temperature Coefficient of Forward Voltage			-1.8		mV/ºC	
BV _R	Input Reverse Breakdown Voltage	I _R = 10 μA	5			V	
C _{IN}	Input Capacitance	f = 1 MHz, V _F = 0V		60		pF	
1	High Level Output	V _O = V _{DD} – 3 V	-1.0	-2.0	-2.5	А	
I _{OH}	Current ⁽⁴⁾	$V_{O} = V_{DD} - 6 V$	-2.0		-2.5		
	Low Level Output	V _O = V _{SS} + 3 V	1.0	2.0	2.5	А	
I _{OL}	Current ⁽⁴⁾	$V_{O} = V_{SS} + 6 V$	2.0		2.5		
M	High Level Output Voltage	I _F = 10 mA, I _O = -2.5 A	V _{DD} – 6.25 V	$V_{DD} - 2.5 V$		v	
V _{OH}		I _F = 10 mA, I _O = -100 mA	$V_{DD} - 0.25 V$	V _{DD} – 0.1 V		v	
M	Low Level Output Voltage	I _F = 0 mA, I _O = 2.5 A		V _{SS} + 2.5 V	V _{SS} + 6.25 V	v	
V _{OL}		I _F = 0 mA, I _O = 100 mA		V_{SS} + 0.1 V	V_{SS} + 0.25 V	V	
I _{DDH}	High Level Supply Current	V _O = Open, I _F = 7 to 16 mA		2.8	3.8	mA	
I _{DDL}	Low Level Supply Current	V _O = Open, V _F = 0 to 0.8 V		2.8	3.8	mA	
I _{FLH}	Threshold Input Current Low to High	I _O = 0 mA, V _O > 5 V		2.3	5.0	mA	
V _{FHL}	Threshold Input Voltage High to Low	I _O = 0 mA, V _O < 5 V	0.8			V	
V _{UVLO+}	Under Voltage Lockout	I _F = 10 mA, V _O > 5 V	11.5	12.7	13.5	V	
V _{UVLO}	Threshold	I _F = 10 mA, V _O < 5 V	10.0	11.2	12.0	V	
UVLO _{HYS}	Under Voltage Lockout Threshold Hysteresis			1.5		V	

Switching Characteristics

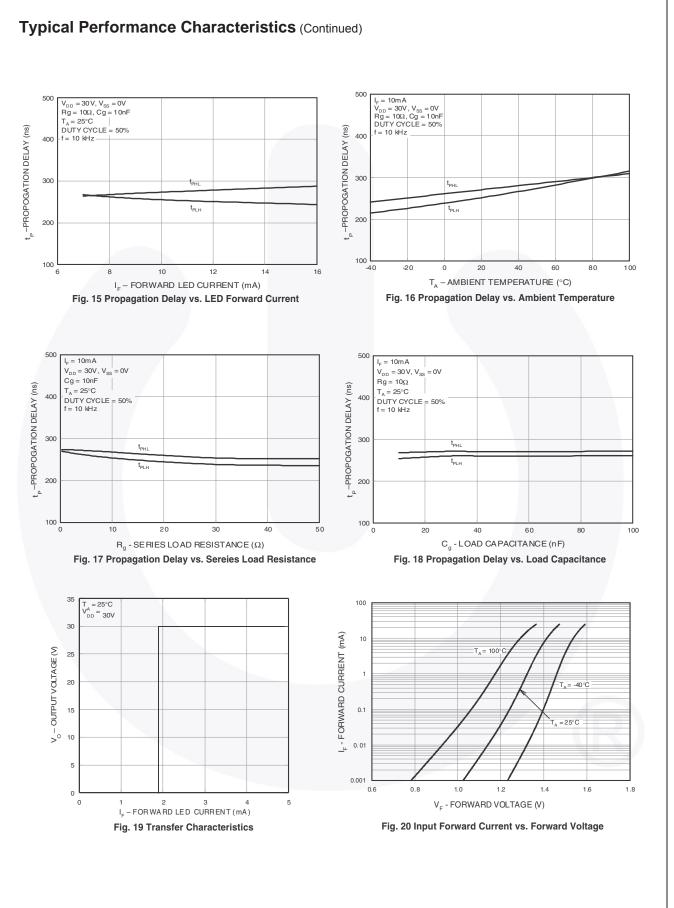
Apply over all recommended conditions, typical value is measured at V_{DD} = 30 V, V_{SS} = Ground, T_A = 25°C unless otherwise specified.

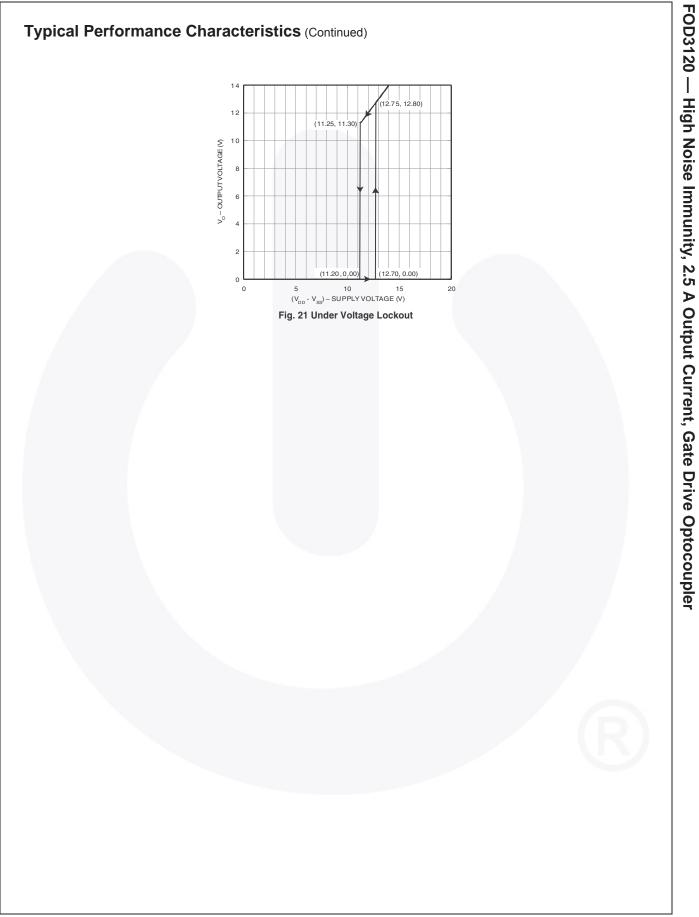

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{PHL}	Propagation Delay Time to Logic Low Output		150	275	400	ns
t _{PLH}	Propagation Delay Time to Logic High Output		150	255	400	ns
PWD	Pulse Width Distortion, t _{PHL} – t _{PLH}	I _F = 7 mA to 16 mA, Rg = 10 Ω , Cg =10 nF,		20	100	ns
PDD (Skew)	Propagation Delay Difference Between Any Two Parts or Channels, $(t_{PHL} - t_{PLH})^{(11)}$	f = 10 kHz, Duty Cycle = 50%	-250		250	ns
t _R	Output Rise Time (10% – 90%)			60		ns
t _F	Output Fall Time (90% – 10%)			60		ns
t _{UVLO ON}	UVLO Turn On Delay	I _F = 10 mA, V _O > 5 V		1.6		μs
t _{UVLO OFF}	UVLO Turn Off Delay	I _F = 10 mA, V _O < 5 V		0.4		μs
CM _H	Common Mode Transient Immunity at Output High	$T_A = 25^{\circ}C, V_{DD} = 30 V,$ $I_F = 7 \text{ to } 16 \text{ mA},$ $V_{CM} = 2000 V^{(12)}$	35	50		kV/µs
CM _L	Common Mode Transient Immunity at Output Low	$T_A = 25^{\circ}C, V_{DD} = 30 V, V_F = 0 V,$ $V_{CM} = 2000 V^{(13)}$	35	50		kV/µs

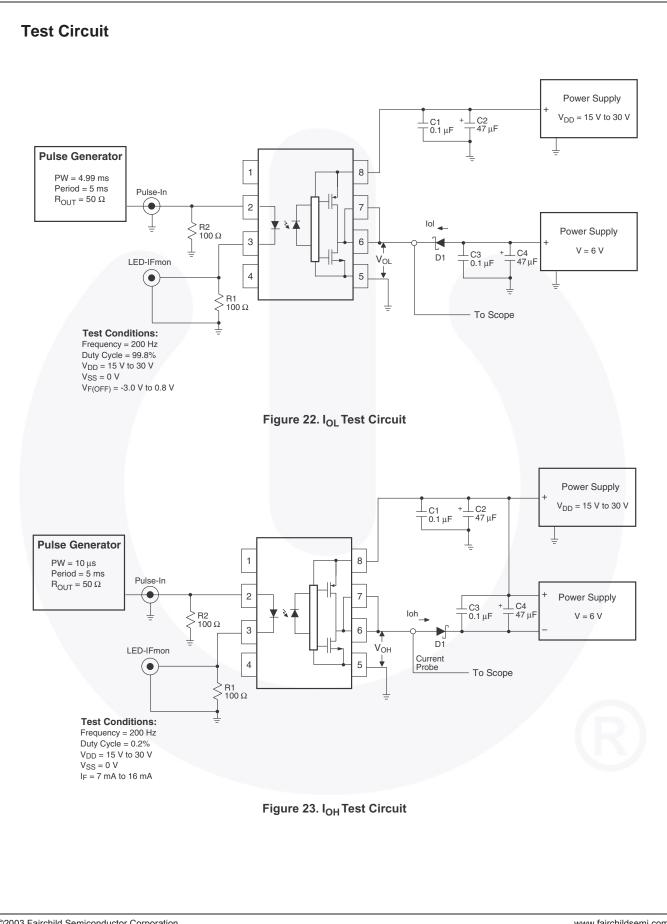
Notes:

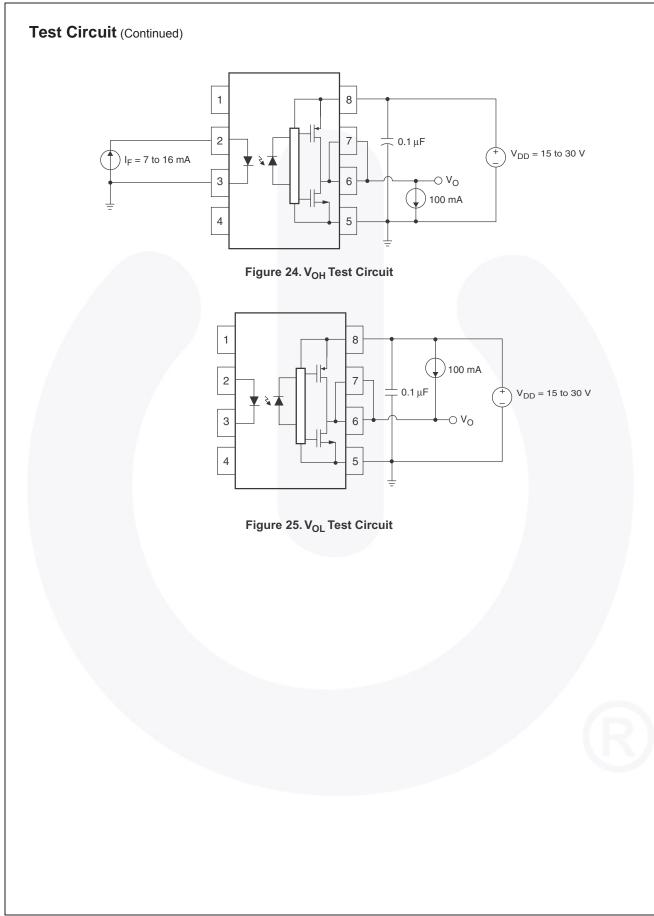

11. The difference between t_{PHL} and t_{PLH} between any two FOD3120 parts under same test conditions.

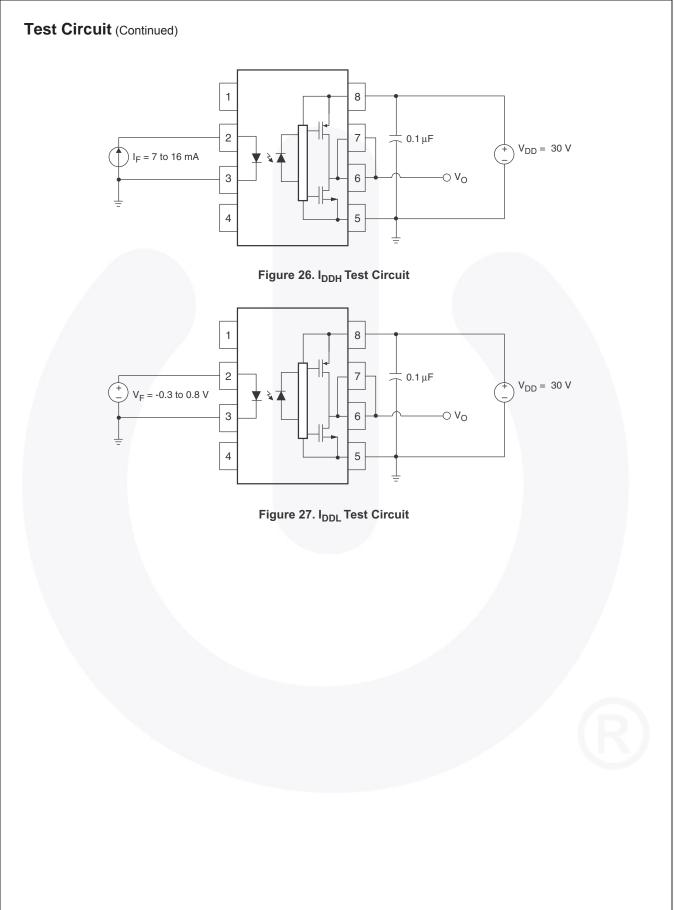
 Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode impulse signal, Vcm, to assure that the output will remain high (i.e. V_O > 15.0 V).

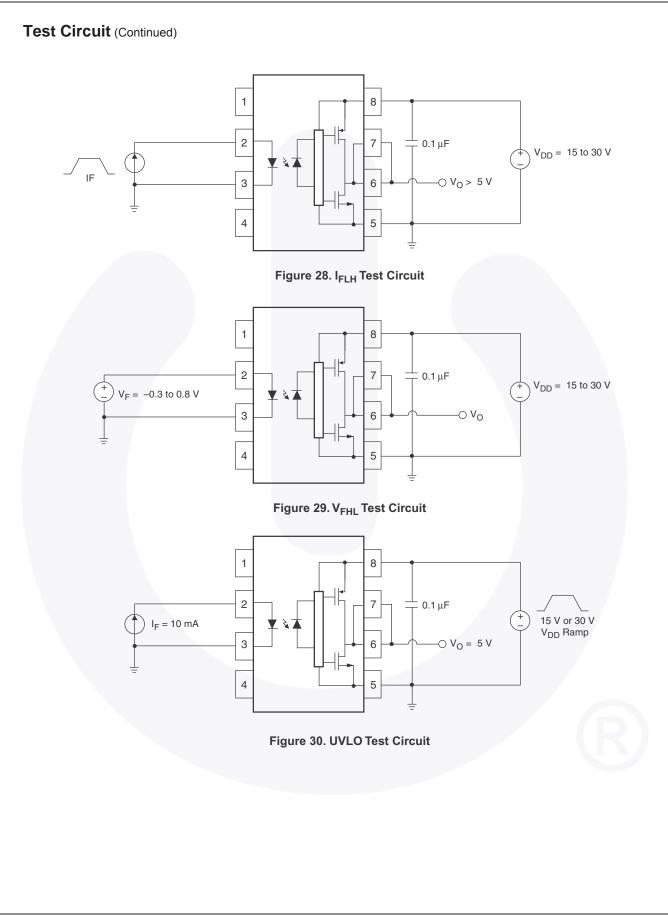

 Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm, to assure that the output will remain low (i.e. V_O < 1.0 V).

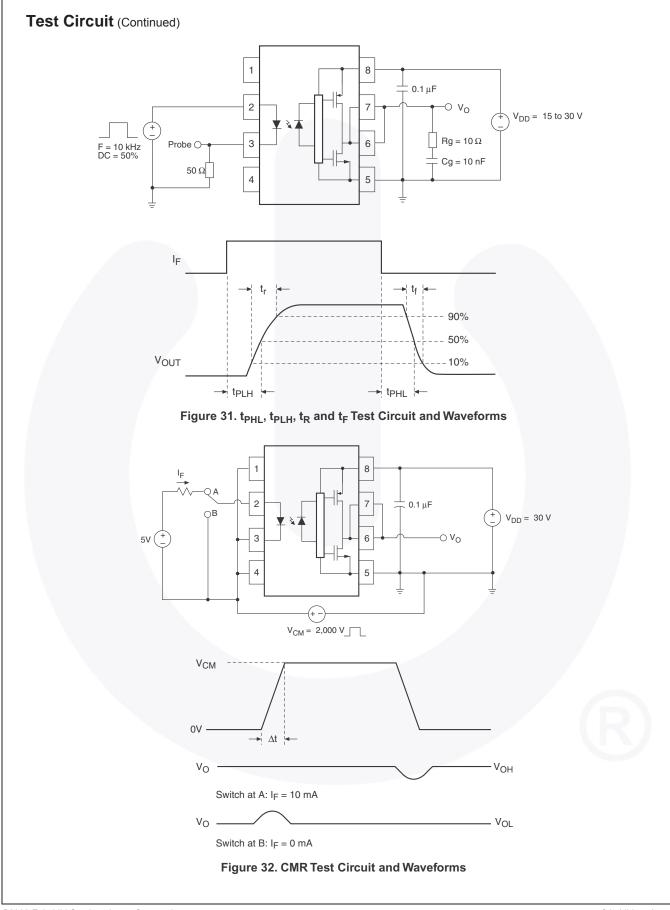


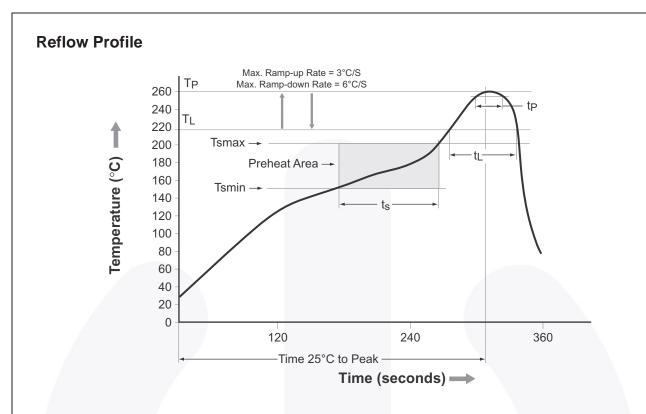

FOD3120 — High Noise Immunity, 2.5 A Output Current, Gate Drive Optocoupler


8






11



FOD3120 — High Noise Immunity, 2.5 A Output Current, Gate Drive Optocoupler

Profile Freature	Pb-Free Assembly Profile		
Temperature Min. (Tsmin)	150°C		
Temperature Max. (Tsmax)	200°C		
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds		
Ramp-up Rate (t _L to t _P)	3°C/second max.		
Liquidous Temperature (T _L)	217°C		
Time (t _L) Maintained Above (T _L)	60–150 seconds		
Peak Body Package Temperature	260°C +0°C / –5°C		
Time (t _P) within 5°C of 260°C	30 seconds		
Ramp-down Rate (T _P to T _L)	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

Ordering Information

Part Number	Package	Packing Method
FOD3120	DIP 8-Pin	Tube (50 units per tube)
FOD3120S	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)
FOD3120SD	SMT 8-Pin (Lead Bend)	Tape and Reel (1,000 units per reel)
FOD3120V	DIP 8-Pin, DIN_EN/IEC60747-5-5 option	Tube (50 units per tube)
FOD3120SV	SMT 8-Pin (Lead Bend), DIN_EN/IEC60747-5-5 option	Tube (50 units per tube)
FOD3120SDV	SMT 8-Pin (Lead Bend), DIN_EN/IEC60747-5-5 option	Tape and Reel (1,000 units per reel)
FOD3120TV	DIP 8-Pin, 0.4" Lead Spacing, DIN_EN/IEC60747-5-5 option	Tube (50 units per tube)
FOD3120TSV	SMT 8-Pin, 0.4" Lead Spacing, DIN_EN/IEC60747-5-5 option	Tube (50 units per tube)
FOD3120TSR2V	SMT 8-Pin, 0.4" Lead Spacing, DIN_EN/IEC60747-5-5 option	Tape and Reel (700 units per reel)

Marking Information

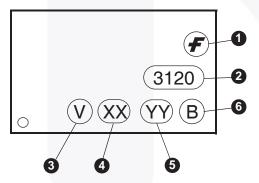
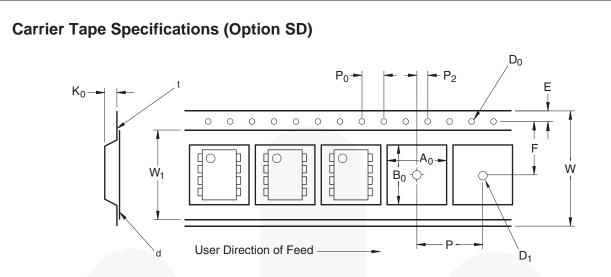
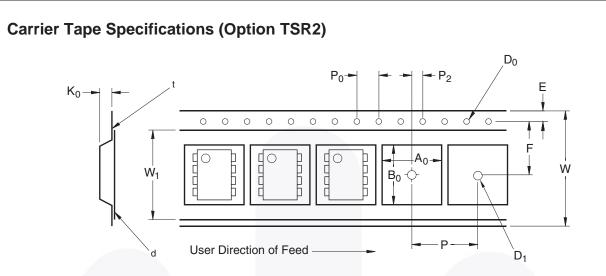
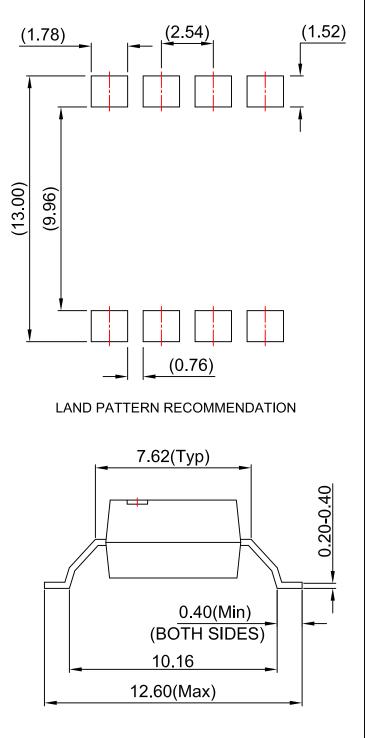




Figure 33. Top Mark

Definitions			
1	Fairchild logo		
2	Device number		
3	DIN_EN/IEC60747-5-5 Option (only appears on component ordered with this option)		
4	Two digit year code, e.g., '16'		
5	Two digit work week ranging from '01' to '53'		
6	Assembly package code		



Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂		2.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ±0.20
B ₀		10.30 ±0.20
K ₀		4.90 ±0.20
W ₁	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

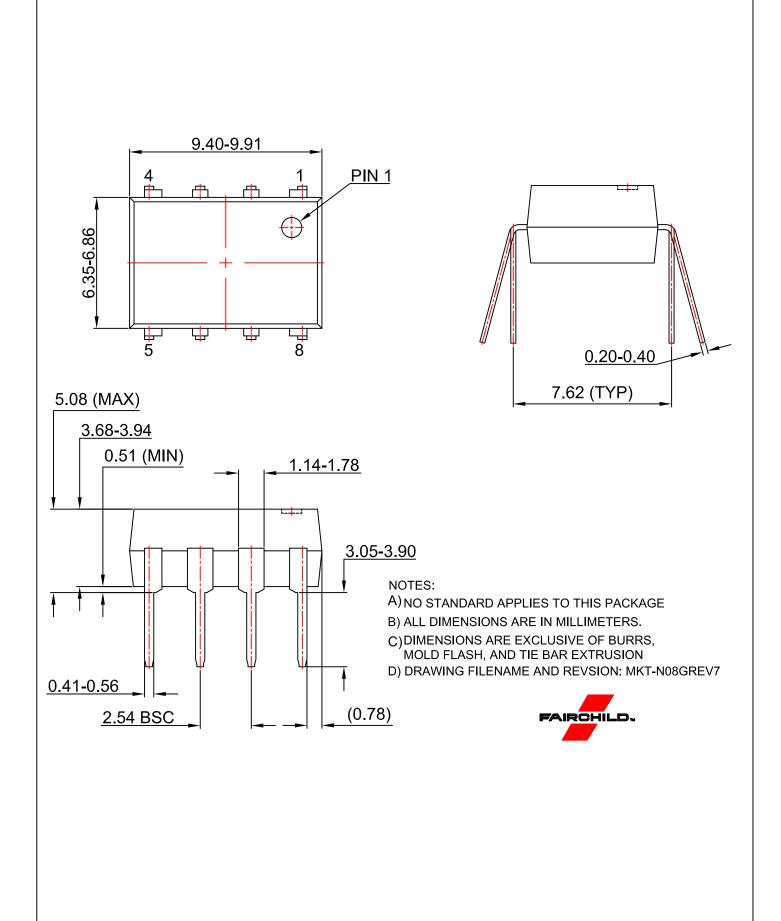
Symbol	Description	Dimension in mm	
W	Tape Width	24.0 ± 0.3	
t	Tape Thickness	0.40 ± 0.1	
P ₀	Sprocket Hole Pitch	4.0 ± 0.1	
D ₀	Sprocket Hole Diameter	1.55 ± 0.05	
E	Sprocket Hole Location	1.75 ± 0.10	
F	Pocket Location	11.5 ± 0.1	
P ₂		2.0 ± 0.1	
Р	Pocket Pitch	16.0 ± 0.1	
A ₀	Pocket Dimensions	12.80 ± 0.1	
B ₀		10.35 ± 0.1	
K ₀		5.7 ±0.1	
W ₁	Cover Tape Width	21.0 ± 0.1	
d	Cover Tape Thickness	0.1 max	
	Max. Component Rotation or Tilt	10°	
R	Min. Bending Radius	30	

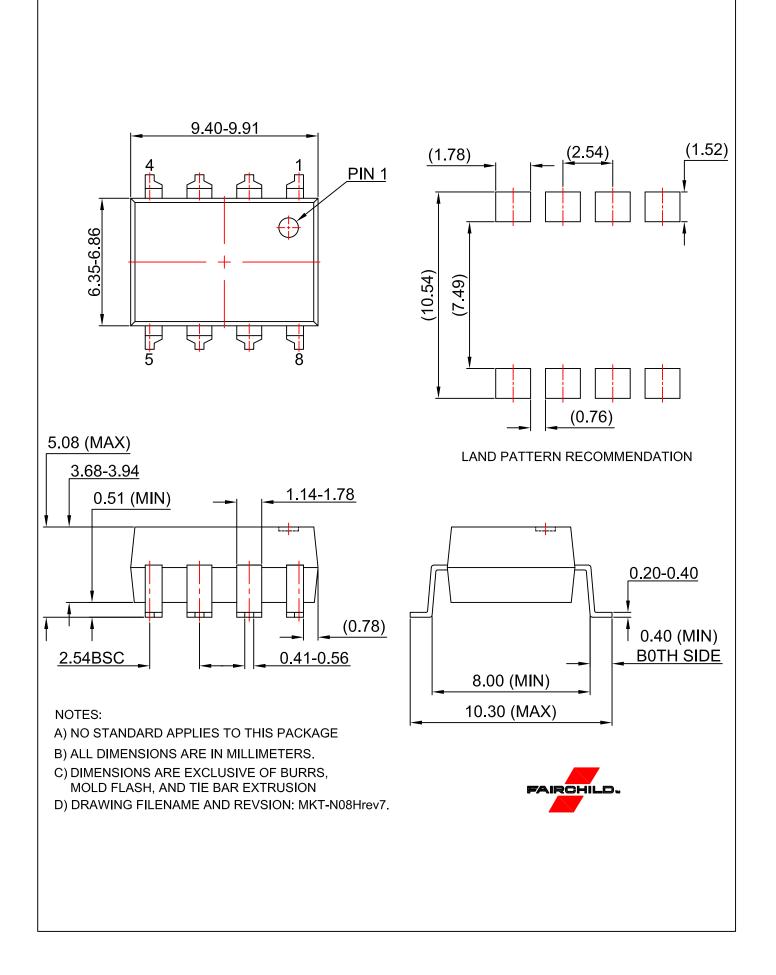
1.500 4 <u>Ø1.00</u> (TYP) 6 35-6 86 5 8 9.40-9.91 1.14-1.78 3.68-3.94 5.08 Max

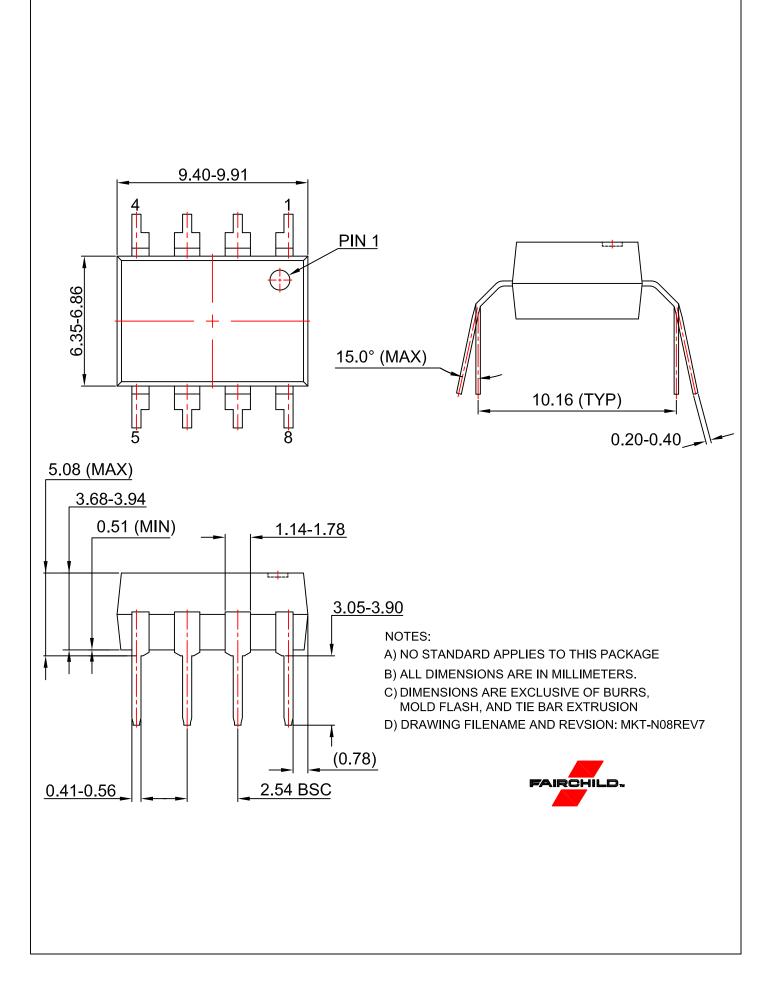
FAIRCHILD

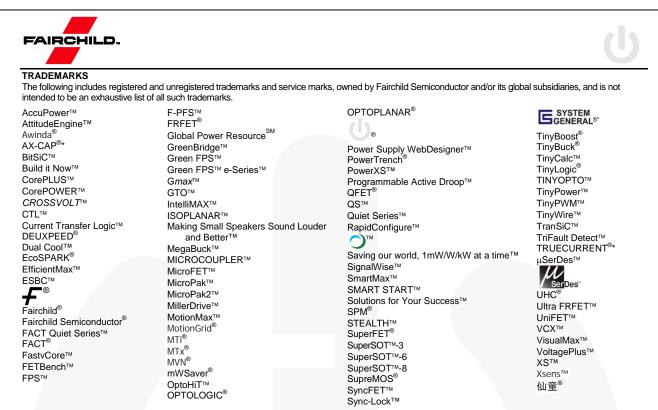
NOTES:

(0.775)


A) NO STANDARD APPLIES TO THIS PACKAGE


2.54 (Typ)


0.510(Min)


B) ALL DIMENSIONS ARE IN MILLIMETERS.

C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIOND) DWG FILENAME AND REVISION: MKT-N08Lrev2.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

FOD3120 FOD3120SDV FOD3120SV FOD3120TV FOD3120V FOD3120S FOD3120SD FOD3120TSR2V FOD3120TSV