

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

April 2016

FODM100x Series Single Channel, DC Sensing Input, Phototransistor Optocoupler In Stretched Body SOP 4-Pin

Features

- ≥ 8 mm Creepage and Clearance Distance, and ≥ 0.4 mm Insulation Distance to Achieve Reliable and High Voltage Insulation
- · Safety and Regulatory Approvals
- UL1577, 5,000 VAC_{RMS} for 1 min.
- DIN_EN/IEC60747-5-5, 890 V_Peak Working Voltage (pending approval)
- High Breakdown Collector to Emitter Voltage, BV_{CEO} = 70 V minimum
- Extended Industrial Temperate Range, -40 to 110°C
- Current Transfer Ratio at I_F = 5 mA, V_{CE} = 5 V,
 T_A = 25°C
- FODM1007: 80 to 160%
- FODM1008: 130 to 260%
- FODM1009: 200 to 400%

Related Resources

- www.fairchildsemi.com/products/optoelectronics/
- www.fairchildsemi.com/datasheets/HM/ HMHA2801.pdf

Description

The FODM100x Series, single channel, DC sensing input, optocoupler consists of one gallium arsenide (GaAs) infrared light emitting diode optically coupled to one phototransistor, in a stretched body SOP 4-pin package. The input-output isolation voltage, $V_{\rm ISO}$, is rated at 5,000 VAC_{RMS}.

Applications

- · Primarily suited for DC-DC Converters
- · For ground loop isolation, signal to noise isolation
- Communications adapters, chargers
- · Consumer appliances, set top boxes
- Industrial power supplies, motor control, programmable logic control

Schematic Package

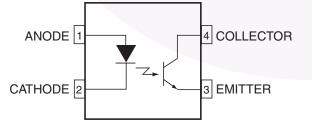


Figure 1. Schematic

Figure 2. Package Outline

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5 (pending approval), this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–III
Climatic Classification		40/110/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit		
.,	Input-to-Output Test Voltage, Method A, V_{IORM} x 1.6 = V_{PR} , Type and Sample Test with t_{m} = 10 s, Partial Discharge < 5 pC	1,426	V _{peak}		
V _{PR}	V _{PR} Input-to-Output Test Voltage, Method B, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with t _m = 1 s, Partial Discharge < 5 pC				
V _{IORM}	Maximum Working Insulation Voltage	890	V _{peak}		
V_{IOTM}	Highest Allowable Over-Voltage	6,000	V _{peak}		
	External Creepage	≥ 8.0	mm		
	External Clearance	≥ 8.0	mm		
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm		
T _S	Case Temperature ⁽¹⁾	150	°C		
I _{S,INPUT}	Input Current ⁽¹⁾	200	mA		
P _{S,OUTPUT}	Output Power ⁽¹⁾	300	mW		
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω		

Note:

1. Safety limit values – maximum values allowed in the event of a failure

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. TA = 25°C unless otherwise specified.

Symbol	Parameter	r Value Unit	
TOTAL PACKA	GE	<u> </u>	ı
T _{STG}	Storage Temperature	-55 to +150	°C
T _{OPR}	Operating Temperature	-40 to +110	°C
T _J	Junction Temperature	-40 to +125	°C
EMITTER			
I _{F (avg)}	Continuous Forward Current	50	mA
I _{F (pk)}	Peak Forward Current (1 µs pulse, 300 pps)	1	Α
V _R	Reverse Input Voltage	6	V
PD_{LED}	LED Power Dissipation @ T _A = 25°C ⁽²⁾	100	mW
, DLED	Derate Above 25°C	0.9	mW/°C
DETECTOR			
I _C	Continuous Collector Current	50	mA
V _{CEO}	Collector-Emitter Voltage	70	V
V _{ECO}	Emitter-Collector Voltage	7	V
$PD_{\mathbb{C}}$	Detector Power Dissipation @ T _A = 25°C (2)	150	mW
. 20	Derate Above 25°C	1.47	mW/°C

Note:

2. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Individual Component Characteristics

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER							
V _F	Forward Voltage	All	I _F = 50 mA		1.4	1.6	V
I _R	Reverse Current	All	V _R = 4 V			10	μA
DETECTO	R						
BV _{CEO}	Breakdown Voltage Collector to Emitter	All	I _C = 1 mA, I _F = 0	70			V
BV _{ECO}	Emitter to Collector	All	$I_E = 0.1 \text{ mA}, I_F = 0$	7			V
I _{CEO}	I _{CEO} Collector Dark Current		V _{CE} = 70 V, I _F = 0			100	nA
C _{CE}	Capacitance	All	V _{CE} = 0 V, f = 1 MHz		5		pF

DC Transfer Characteristics

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
		FODM1007		80		160	
CTR	DC Current Transfer Ratio	FODM1008	$I_F = 5 \text{ mA}, V_{CE} = 5 \text{ V}$	130		260	%
		FODM1009		200		400	
V _{CE (SAT)}	Saturation Voltage	All	I _F = 10 mA, I _C = 1 mA			0.3	V

AC Transfer Characteristics

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
t _r	Rise Time (Non-Saturated)	All	I_C = 2 mA, V_{CE} = 5 V, R_L = 100 Ω		5.7	18.0	II C
t _f	Fall Time (Non-Saturated)	All	I_C = 2 mA, V_{CE} = 5 V, R_L = 100 Ω	\mathcal{A}	8.5	18.0	μs

Isolation Characteristics

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Steady State Isolation Voltage	* ***	T_A = 25 °C, R.H. < 50%, t = 1.0 minute, $I_{I-O} \le 20 \mu A$	5,000			VAC _{RMS}

Typical Performance Characteristics

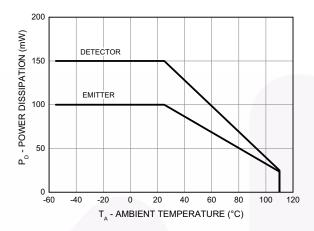


Figure 3. Power Dissipation vs. Ambient Temperature

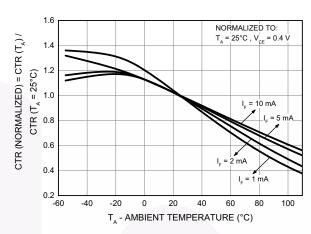


Figure 4. Saturated Normalized Current Transfer Ratio vs. Ambient Temperature

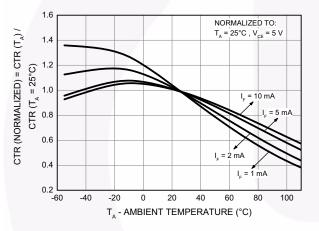


Figure 5. Non-Saturated Normalized Current Transfer Ratio vs. Ambient Temperature

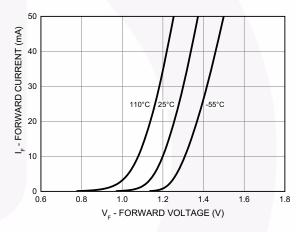


Figure 6. Forward Current vs. Forward Voltage

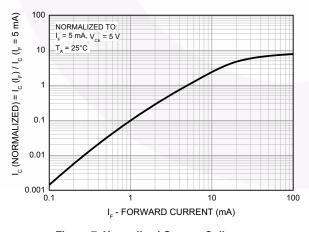


Figure 7. Normalized Current Collector vs. Forward Current

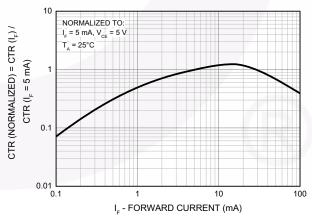
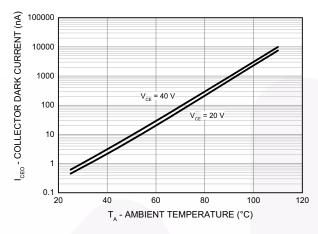



Figure 8. Normalized Current Transfer Ratio vs. Forward Current

Typical Performance Characteristics (Continued)

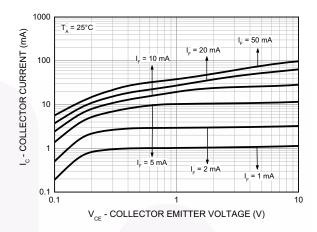
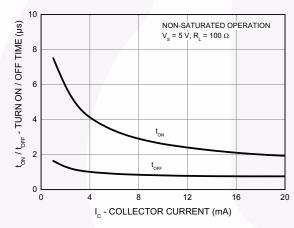



Figure 9. Collector Dark Current vs. Ambient Temperature

Figure 10. Collector Current vs. Collector Emitter Voltage

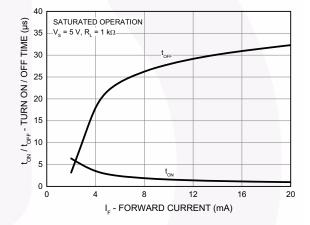
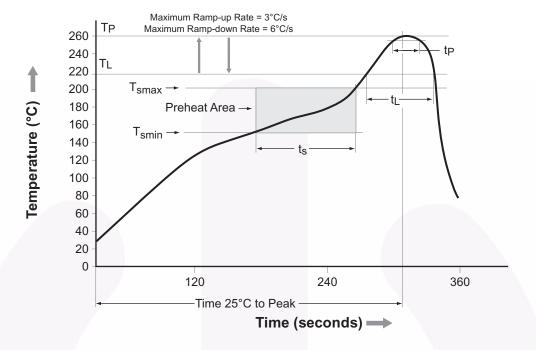



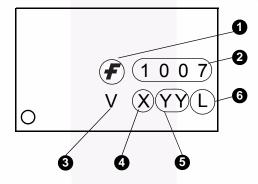
Figure 11. Turn On/Turn Off Time vs. Collector Current

Figure 12. Turn On/ Turn Off Time vs. Forward Current

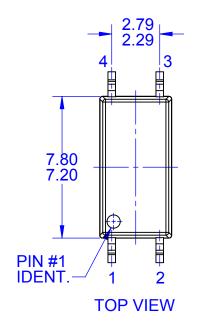
Reflow Profile

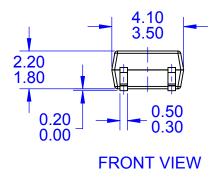
Profile Freature	Pb-Free Assembly Profile		
Temperature Minimum (T _{smin})	150°C		
Temperature Maximum (T _{smax})	200°C		
Time (t _S) from (T _{smin} to T _{smax})	60 s to 120 s		
Ramp-up Rate (t _L to t _P)	3°C/second maximum		
Liquidous Temperature (T _L)	217°C		
Time (t _L) Maintained Above (T _L)	60 s to 150 s		
Peak Body Package Temperature	260°C +0°C / –5°C		
Time (t _P) within 5°C of 260°C	30 s		
Ramp-Down Rate (T _P to T _L)	6°C/s maximum		
Time 25°C to Peak Temperature	8 minutes maximum		

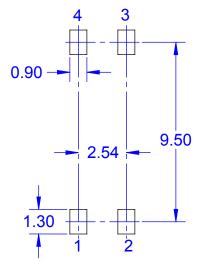
Figure 13. Reflow Profile

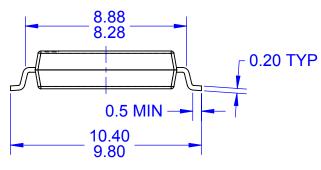

Ordering Information

Part Number	Package	Packing Method
FODM1007	Stretched Body SOP 4-Pin	Tube (100 units per tube)
FODM1007R2	Stretched Body SOP 4-Pin	Tape and Reel (3,000 units per reel)
FODM1007V	Stretched Body SOP 4-Pin,	Tubo (100 unito por tubo)
FODM 1007V	DIN EN/IEC60747-5-5 Option (pending approval)	Tube (100 units per tube)
FODM1007R2V	Stretched Body SOP 4-Pin,	Tape and Reel (3,000 units per reel)
FODIVITION/R2V	DIN EN/IEC60747-5-5 Option (pending approval)	Tape and Neer (3,000 units per reer)


Note:


2. The product orderable part number system listed in this table also applies to the FODM1008, and FODM1009 products.


Marking Information


Definiti	Definitions				
1	1 Fairchild Logo				
2	Device Number, e.g. 1007				
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option) (pending for approval)				
4	Last Digit Year Code, e.g. '6'				
5	Two Digit Work Week Ranging from '01' to '53'				
6	Assembly Package Code				

LAND PATTERN RECOMMENDATION

SIDE VIEW

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE B. ALL DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS DO NOT INCLUDE MOLD FLASH **OR BURRS**
- D. DRAWING FILENAME: MKT-LSOP04Arev1

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

TM TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FODM1007R2 FODM1007