

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

April 2015

FPF2411 — IntelliMAX[™] 6 V / 6 A - Rated Bi-Directional Switch with Slew Rate Control and RCB

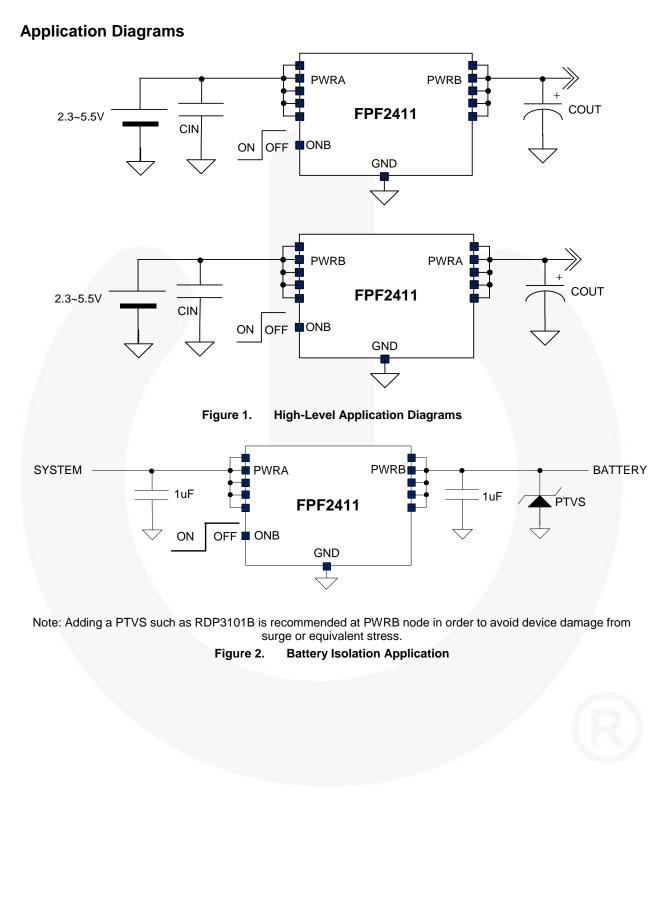
Features

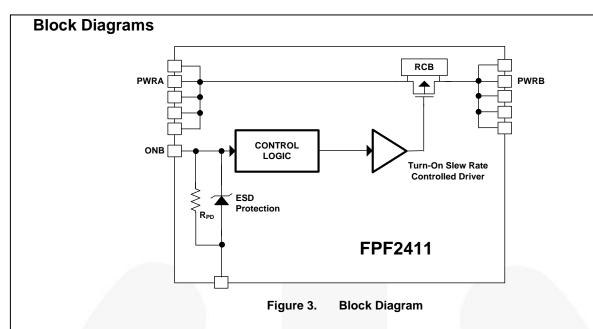
- Capability: 6 V
- Low R_{ON}
 - 10 mΩ at 5 V at PWRA or PWRB (Typ.)
 - 12 mΩ at 3.8 V at PWRA or PWRB (Typ.)
- Maximum Current Capability: 6 A (Bi-Directional)
- Ultra-Low I_Q:<1 µA</p>
- Active LOW Control Pin
- 2 ms Long Slew Rate
- Reverse Current Blocking (RCB) during OFF
- Robust ESD Capability:
 - 5 kV HBM, 2 kV CDM
 - 15 kV Air Discharge
 - 8 kV Contact Discharge Under IEC 61000-4-2

Applications

- Smartphone / Tablet PC
- Mobile Devices
- Portable Media Devices

Description


The FPF2411 is a 6 V/6 A-rated bi-directional load switch, consisting of a slew-rate-controlled, low-on-resistance, P-channel MOSFET switch with protection features. The slew-rate-controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the input power rails. The input voltage range operates from 2.3 V to 5.5 V.


Bi-directional switching allows reverse current from V_{OUT} to V_{IN} . The switching is controlled by active-LOW logic input the ONB pin. The FPF2411 is capable of interfacing directly with low-voltage control signal General-Purpose Input / Output (GPIO).

The FPF2411 is available in 12-bump, 1.235 mm x 1.625 mm Wafer-Level Chip-Scale Package (WLCSP) with 0.4 mm pitch.

Ordering Information

Part Number	Top Mark	R _{oN} (Typ.) at 3.8 V _{IN}	Output Discharge	ONB Pin Functionality	Package
FPF2411BUCX_F130	QR	12 mΩ	No		12-Ball Wafer-Level Chip-Scale Package (WLCSP), 3 x 4 Array, 0.4 mm Pitch, 250 µm Ball

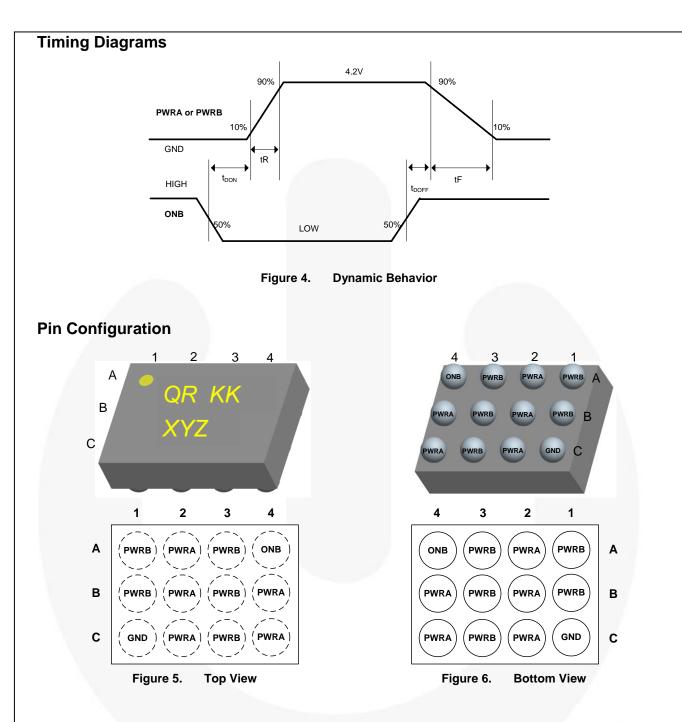

Application Scenario

Table 1. PWRA and PWRB can be Input or Output, Depending on Scenario

PWRA	PWRB	ONB	Operations
х	x	HIGH	OFF state PWRA and PWRB are isolated. Current more than I_{SD} or I_{RCB} is NOT allowed.
2.3~5.5 V	Open	HIGH → LOW	Turn-on with 2 ms of t _R at PWRB.
Open	2.3~5.5 V	HIGH → LOW	Turn-on with 2 ms of t _R at PWRA.
2.3~5.5 V	Open	LOW	ON state Operating current is from PWRA. No problem with 6 A DC current flowing.
Open	2.3~5.5 V	LOW	ON state Operating current is from PWRB. No problem with 6 A DC current flowing.
2.3~5.5 V	Open	LOW → HIGH	Turn-off with 1 ms of t _F at PWRB.
Open	2.3~5.5 V	LOW → HIGH	Turn-off with 1 ms of t _F at PWRA.

Note:

1. X = Don't care.

Pin Descriptions

Pin #	Name	Description
A2, B2, B4, C2, C4	PWRA	Power Input / Output: Bi-directional power path
A1, A3, B1, B3, C3	PWRB	Power Input / Output: Bi-directional power path
C1	GND	Ground
A4	ONB	ON/OFF Control Input: Active LOW.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{PIN}	PWRA, PWRB, ONB to GND		-0.3	6.0	V
I _{SW}	Maximum Continuous Switch	Maximum Continuous Switch Current			Α
t _{PD}	Total Power Dissipation at TA	=25°C		1.48	W
TJ	Operating Junction Temperature			+150	°C
T _{STG}	Storage Junction Temperature			+150	°C
Θ_{JA}	Thermal Resistance, Junction-to-Ambient (1in. ² Pad of 2 oz. Copper)			84.1 ⁽²⁾	°C/W
	Electrostatic Discharge	Human Body Model, JESD22-A114	5		
ESD	Capability	Charged Device Model, JESD22-C101	2		
E9D	IEC61000 4.2 System Lovel	Air Discharge (PWRA, PWRB, ONB to GND)	15		kV
	IEC61000-4-2 System Level	Contact Discharge (PWRA, PWRB, ONB to GND)	8		

Note:

2. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{PWRn}	PWRA, PWRB	2.3	5.5	V
T _A	Ambient Operating Temperature	-40	85	°C

DC / AC Characteristics

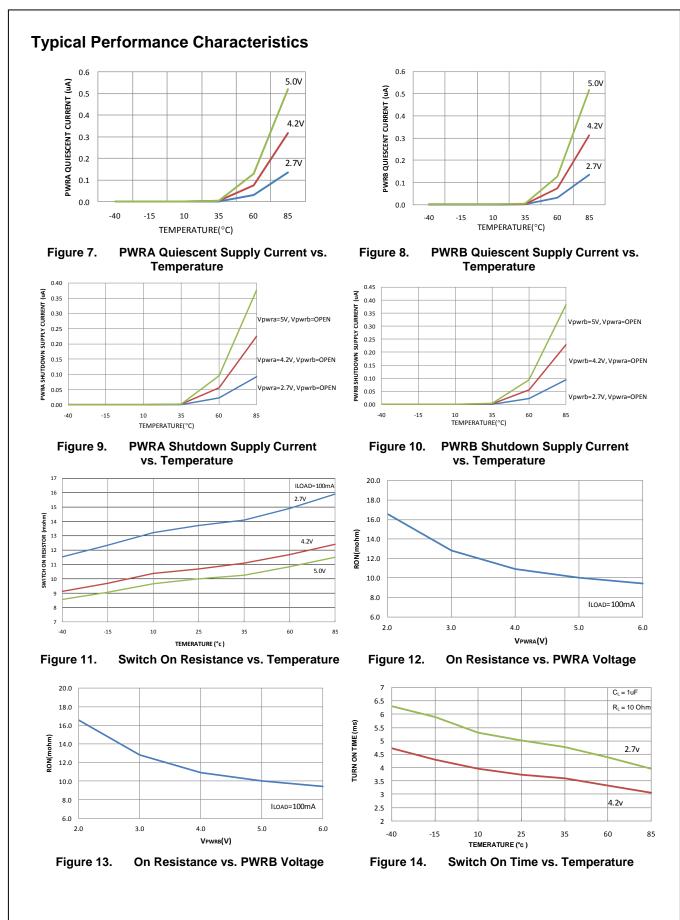
Unless otherwise noted, V_{IN} =2.3 to 5.5 V, T_A =-40 to 85°C; typical values are at PWRA or PWRB=4.2 V and T_A =25°C.

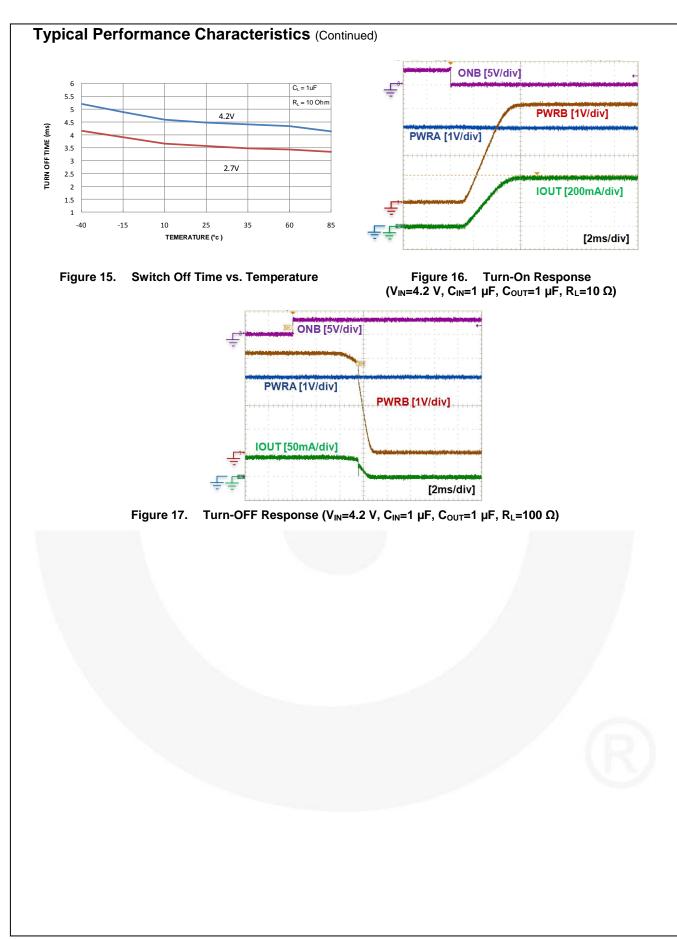
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{pwra} V _{pwrb}	Input Voltage		2.3		5.5	V
I _{SD}	Shutdown Current	PWRA=ONB=5.5 V, PWRB=Open OR PWRB=ONB=5.5 V, PWRA=Open			1	μA
I _{PWRA} I _{PWRB}	Quiescent Current	ONB=GND, I _{OUT} =0 mA			1	μA
Р	On Registeres	PWRA, PWRB=3.8 V, I _{OUT} =200 mA, T _A =25°C		12	17	mΩ
R _{ON}	On-Resistance	PWRA, PWRB=5 V, I _{OUT} =200 mA, T _A =25°C		10	16	
V _{IH} ONB, Input Logic HIGH Voltage ⁽³⁾	PWRn=4.5 V, I _{LOAD} =50 μA, T _A (Max.) = 60°C					
	Voltage ⁽³⁾	PWRn=3.6 V, I _{LOAD} =50 µA, T _A (Max.) = 60°C				v
M	ONB, Input Logic LOW	PWRn=4.5 V, I _{LOAD} =50 µA, T _A (Max.) = 60°C			0.4	v
VIL	Voltage ⁽³⁾	PWRn=3.6 V, I _{LOAD} =50 µA, T _A (Max.) = 60°C			0.4	
R _{PD}	Pull-Down Resistance at ONB			500	700	kΩ
Dynamic	Characteristics: see definition	ons below				
t _{DON}	Turn-On Delay ^(4,5,6)			1.5		
t _R	Rise Time ^(4,5,6)	PWRA or PWRB =4.2 V, R _L =10 Ω, C _L =1 μ F,		3.0		ms
t _{ON}	Turn-On Time ^(4,5,6)	ONB=HIGH to LOW		4.5		
t _{DOFF}	Turn-Off Delay ^(4,5,7)			5.5		
t _F	Fall Time ^(4,5,7)	PWRA or PWRB =4.2 V, R_L =100 Ω, C_L =1 µF, ONB=LOW to HIGH		1.0		ms
t _{OFF}	Turn-Off Time ^(4,5,7)			6.5		

Notes:

3. V_{IH}/V_{IL} is tested under 50 µA current load

4. This parameter is guaranteed by design and characterization; not production tested.


5. $t_{DON}/t_{DOFF}/t_R/t_F$ are defined in Figure 4.


6. $t_{ON}=t_R + t_{DON}$.

7. toff=tf + tDOFF.

Table 2. $V_{IH} / V_{IL} [V]$

I _{LOAD} \ V _{BAT}	2.7 V	3.7 V	4.35 V
0.1 mA	1.8 / 0.7	2.9 / 0.9	3.4 / 1.0
1 mA	1.1 / 0.7	2.1 / 0.9	2.8 / 1.0
3 mA	1.1 / 0.7	2.1 / 0.9	2.7 / 1.0
5 mA	1.0 / 0.7	2.0 / 0.9	2.7 / 1.0
10 mA	0.9 / 0.7	1.9 / 0.8	2.4 / 0.9
30 mA	0.9 / 0.7	1.5 / 0.8	2.2 / 0.9
50 mA	0.9 / 0.7	1.2 / 0.8	1.9 / 0.9
100 mA	0.9 / 0.7	1.0 / 0.8	1.1 / 0.9

Operation and Application Description

The FPF2411 is an ultra-low-R_{ON} P-channel load switch with bi-directional controlled turn-on and Reverse Current Blocking (RCB). The core is a 12 m Ω P-channel MOSFET and controller capable of functioning over a wide input operating range of 2.3 V to 5.5 V. The ONB pin, active-LOW; controls the state of the switch. RCB functionality blocks unwanted reverse current during OFF states by power switch isolation between PWRA and PWRB.

Inrush Current

Inrush current occurs when the device is turned on. Inrush current is dependent on output capacitance and slew rate control capability, as expressed by:

$$I_{INRUSH} = C_{OUT} \times \frac{V_{IN} - V_{INITIAL}}{t_R} + I_{LOAD}$$

where:

- COUT: Output capacitance;
- t_R: Slew rate or rise time at V_{OUT};

V_{IN}: Input voltage;

 $V_{\mbox{\scriptsize INITIAL}}$: Initial voltage at $C_{\mbox{\scriptsize OUT}},$ usually GND; and

ILOAD: Load current.

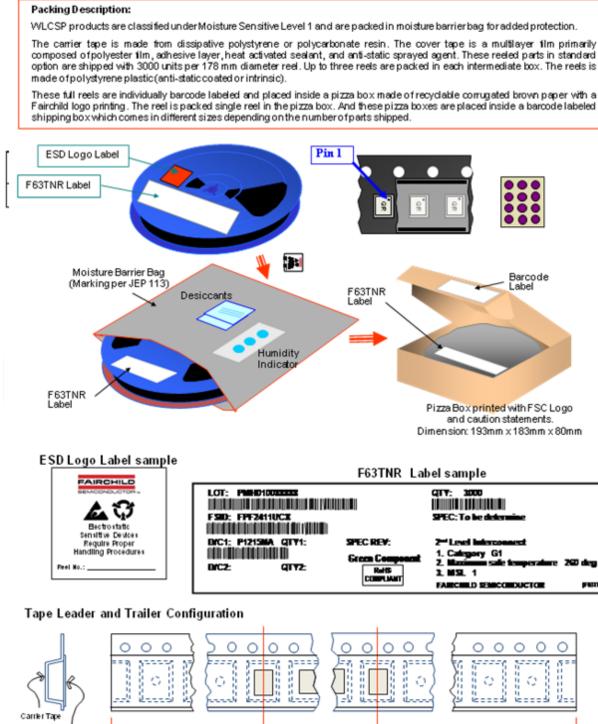
Higher inrush current causes higher input voltage drop, depending on the distributed input resistance and input capacitance. High inrush current can cause problems.

FPF2411 has a 3 ms of slew rate capability under 4.2 V_{IN} at 1 μ F of C_{OUT} and 10 Ω of R_L. Inrush current can be minimized and no input voltage drop appears, as shown in Figure 16.

Reverse-Current Blocking

The reverse-current blocking feature protects the input source against current flow from output to input when the load switch is off by changing the internal body diode direction.

Bypass Capacitor


To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor; a capacitor must be placed between the PWRA or PWRB and GND pins. A ceramic capacitor of at least 1 μ F placed close to the pins is usually sufficient.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance on normal and short-circuit operation. Using wide traces or large copper planes for all pins (PWRA, PWRB, ONB, and GND) minimizes the parasitic electrical effects and the case-to-ambient thermal impedance.

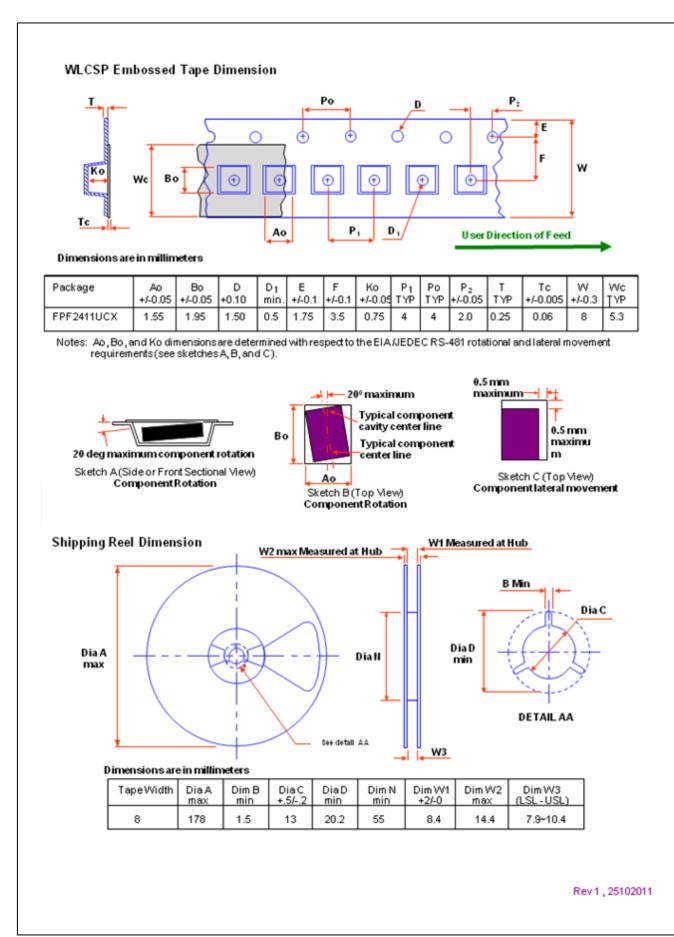
FAIRCHILD

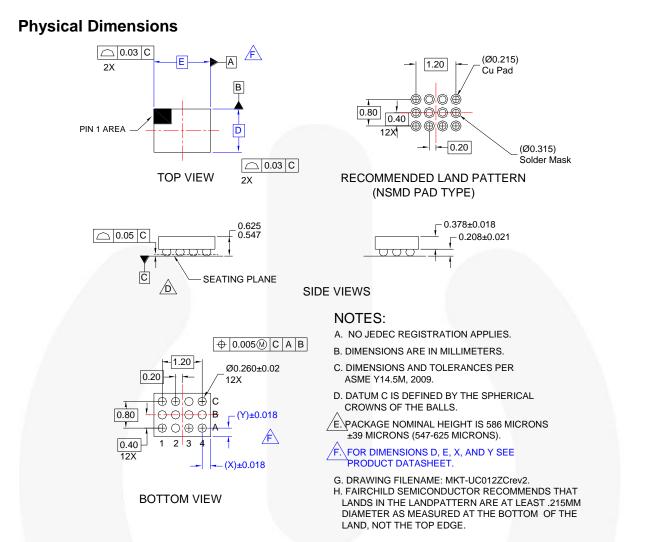
SEMICONDUCTOR

WLCSP Packing - Embossed Tape

FPF2411BUCX Pin1 at 1 o'clock Rev0

• C


6


Leader Tape 500mm minimum

Cover Tape

Trailer Tape 300mm minimum

Components

Figure 18. 12-Ball, 3x4 Array, 0.4 mm Pitch, 250 µm Ball, Wafer-Level Chip-Scale Package (WLCSP)

Nominal Values

Bump	Overall Package	Silicon	Solder Bump	Solder Bump
Pitch	Height	Thickness	Height	Diameter
0.4 mm	0.586 mm	0.378 mm	0.208 mm	0.260 mm

Product-Specific Dimensions

Product	D	E	X	Y
FPF2411BUCX_F130	1.235 mm	1.625 mm	0.2125 mm	0.2175 mm

FPF2411 — IntelliMAX[™] 6 V / 6 A-Rated Bi-Direction Switch with Slew-Rate Control

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FPF2411BUCX_F130</u>