

N-Channel QFET[®] MOSFET 150 V, 50 A, 42 mΩ

Features

- + 50 A, 150 V, ${\sf R}_{{\sf DS}({\sf on})}$ = 42 m Ω (Max) @V_{{\sf GS}} = 10 V, I_D = 25 A
- Low Gate Charge (Typ. 85 nC)
- Low Crss (Typ. 100 pF)
- 100% Avalanche Tested
- 175°C Maximum Junction Temperature Rating

control, and variable switching power applications.

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar

stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state

resistance, and to provide superior switching performance and

high avalanche energy strength. These devices are suitable for

switched mode power supplies, audio amplifier, DC motor

Description

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FQA46N15	Unit	
V _{DSS}	Drain-Source Voltage		150	V	
I _D	Drain Current - Continuous ($T_c = 25^{\circ}C$)		50	А	
	- Continuous (T _C = 100°C)		35.3	А	
DM	Drain Current - Pulsed	(Note 1)	200	А	
V _{GSS}	Gate-Source Voltage		± 25	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	650	mJ	
AR	Avalanche Current	(Note 1)	50	A	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	25	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.0	V/ns	
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		250	W	
	- Derate above 25°C		1.67	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C	

TO-3PN

Thermal Characteristics

Symbol	Parameter	FQA46N15	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	0.6	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Typ.	0.24	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient, Max.	40	°C/W

Package	Marking	and	Ordering	Information
i uonugo	manning	ana	Craoring	mornation

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FQA46N15	FQA46N15	TO-3PN	Tube	N/A	N/A	30 units

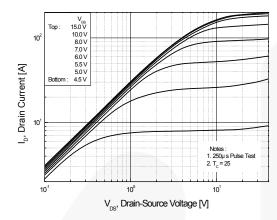
Electrical Characteristics T_C = 25°C unless otherwise noted.

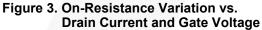
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 250 μ A	150			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to 25°C		0.16		V/°C
I _{DSS} Zer	Zero Gate Voltage Drain Current	V _{DS} = 150 V, V _{GS} = 0 V			1	μA
		V _{DS} = 120 V, T _C = 150°C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V_{GS} = 25 V, V_{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -25 V, V_{DS} = 0 V			-100	nA
On Charact	teristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 25A		0.033	0.042	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 25A		36		S
Dynamic Cl	haracteristics					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		2500	3250	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		520	670	pF
C _{rss}	Reverse Transfer Capacitance			100	130	pF
Switching C	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 75 V, I _D = 45.6A,		35	80	ns
t _r	Turn-On Rise Time	- R _G = 25 Ω 		320	650	ns
t _{d(off)}	Turn-Off Delay Time			210	430	ns
t _f	Turn-Off Fall Time	(Note 4)		200	410	ns
Qg	Total Gate Charge	V _{DS} = 120 V, I _D = 45.6A,		85	110	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		15		nC
Q _{gd}	Gate-Drain Charge	(Note 4)	-	41		nC
Drain-Source	ce Diode Characteristics and Maximum Ratings	3			/	
I _S	Maximum Continuous Drain-Source Diode Forward Current				50	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				200	А
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S =50A			1.5	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 45.6 A,		130		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/μs		0.55		μC

NOTES:

1. Repetitive rating: pulse-width limited by maximum junction temperature.

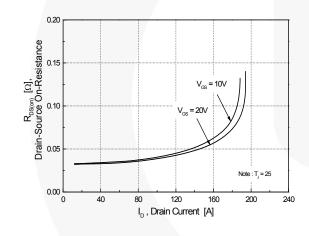
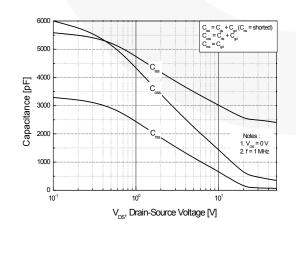
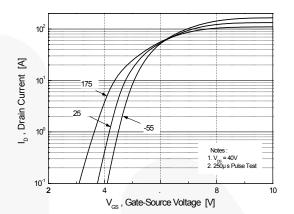
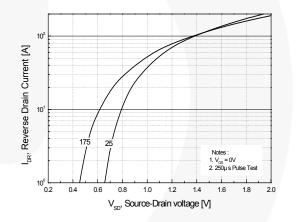
2. L = 0.43 mH, I_{AS} = 50 A, V_{DD} = 25 V, R_G = 25 $\Omega,$ starting T_J = 25°C.

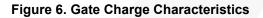

 $3.I_{SD} \leq 46.6$ A, di/dt ≤ 300 A/µs, $V_{DD} \leq BV_{DSS},$ starting T_J = 25°C.

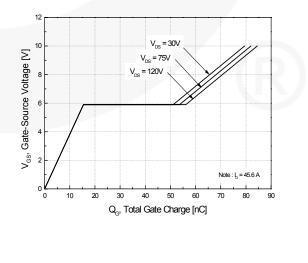

4. Essentially independent of operating temperature typical characteristics.

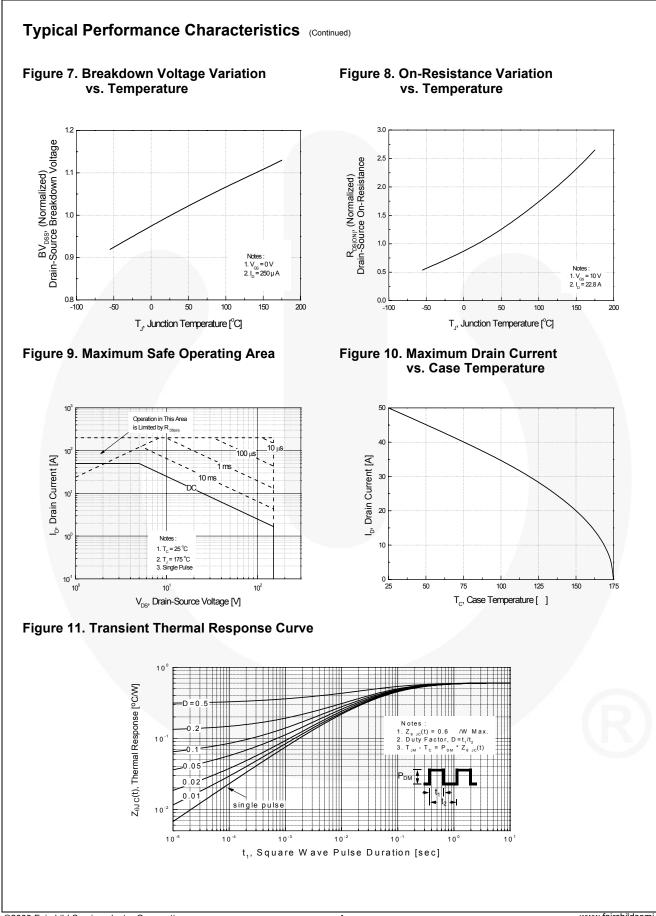
Typical Performance Characteristics

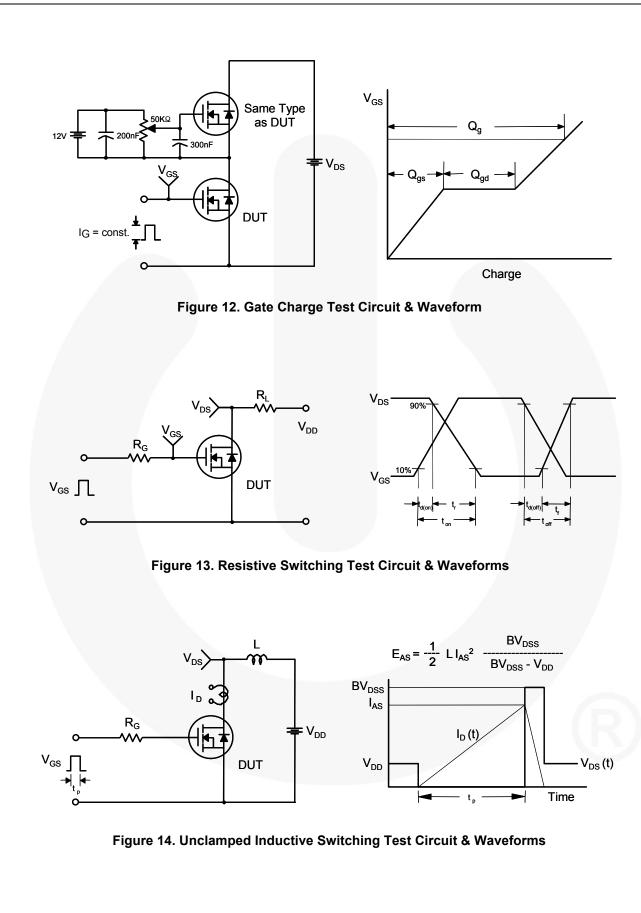
Figure 2. Transfer Characteristics

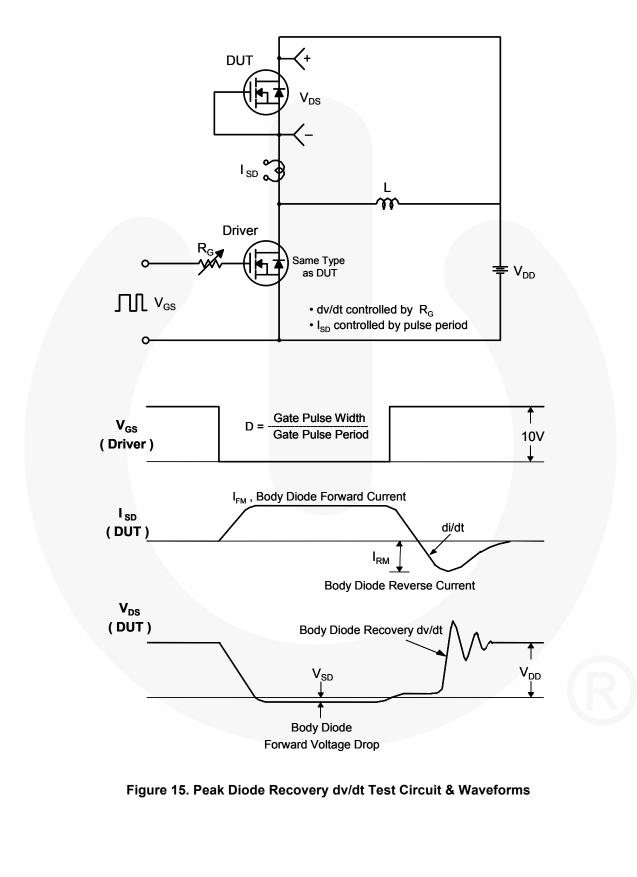





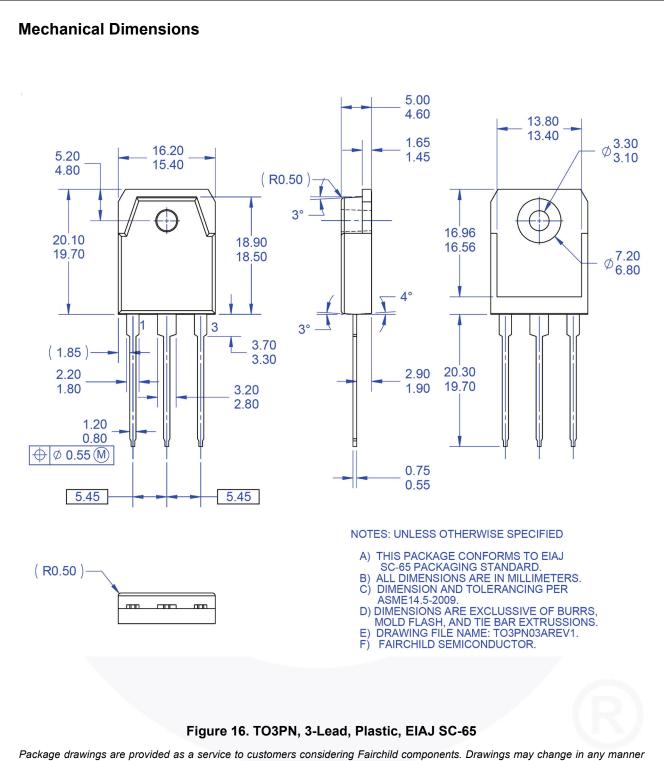

Figure 5. Capacitance Characteristics











4

FQA46N15 — N-Channel QFET[®] MOSFET

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3PN-003

FQA46N15 — N-Channel QFET[®] MOSFET

Not In Production

Obsolete

Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FQA46N15</u>