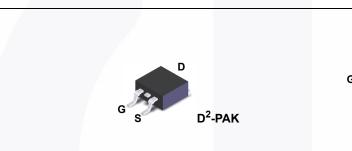
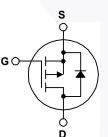


October 2013

FQB22P10

P-Channel QFET® MOSFET

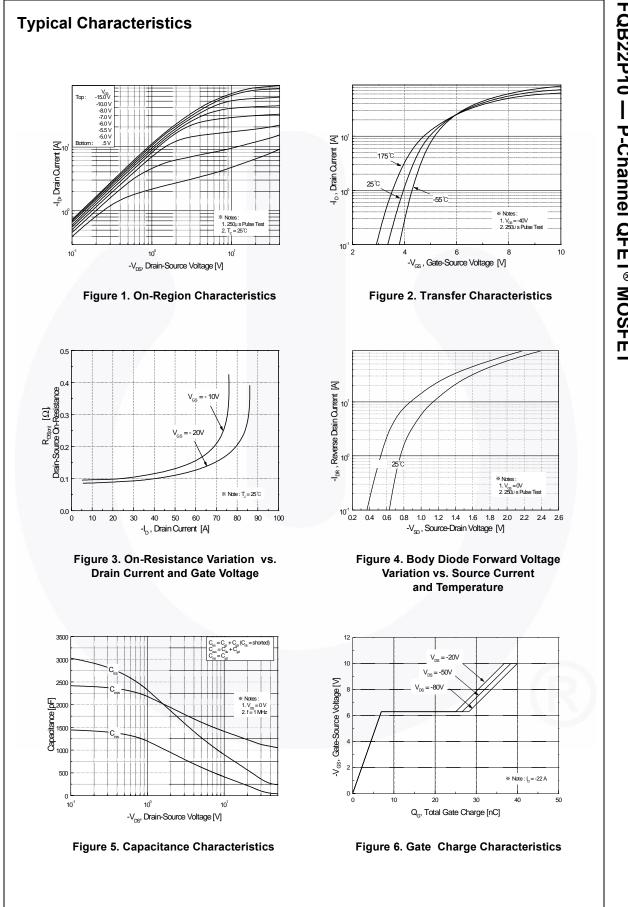

-100 V, -22 A, 125 m Ω

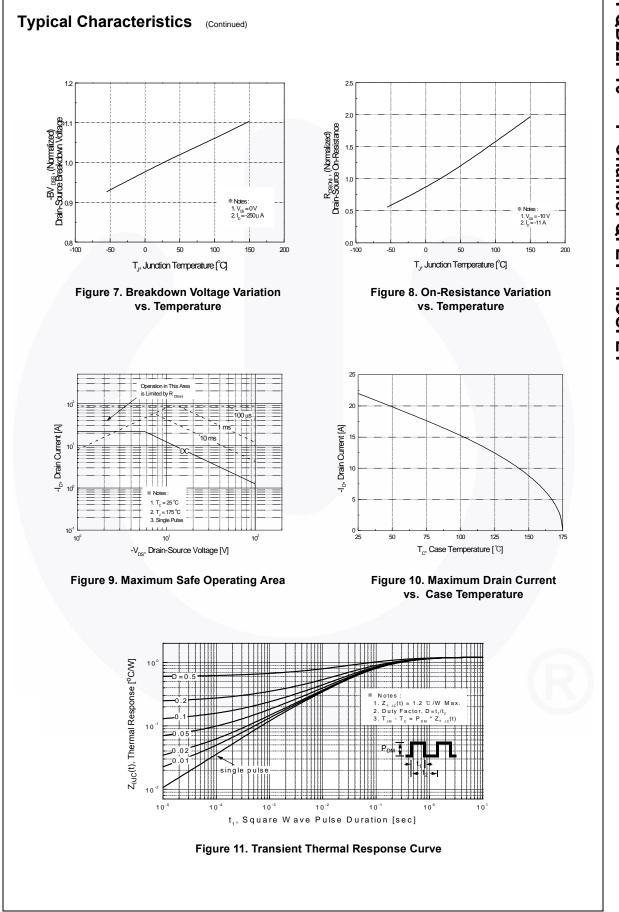

Description

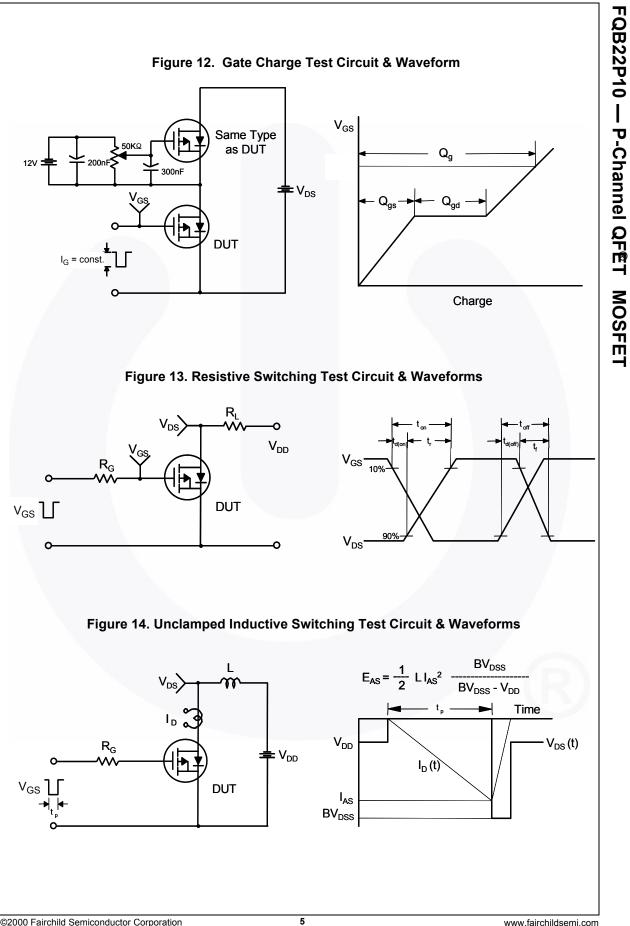
This P-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

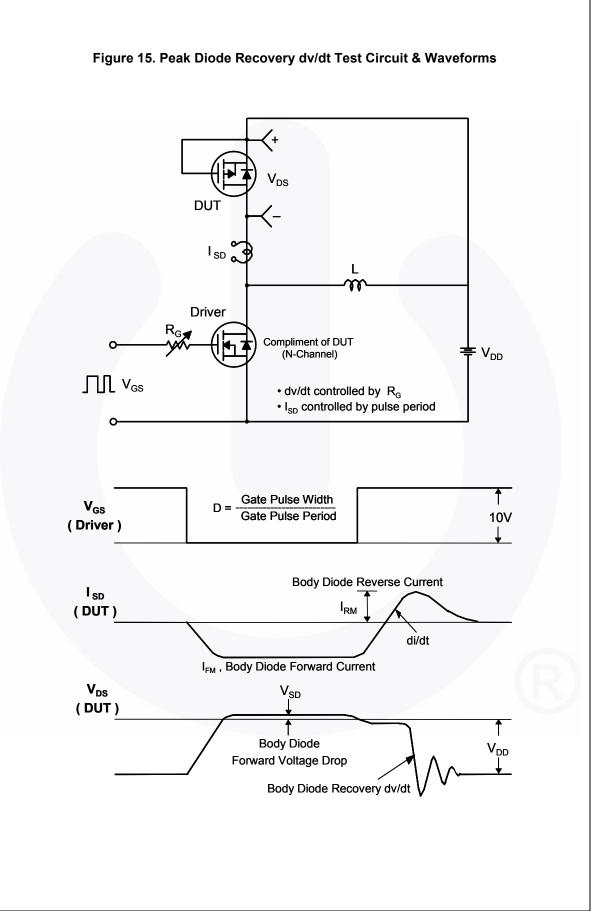
Features

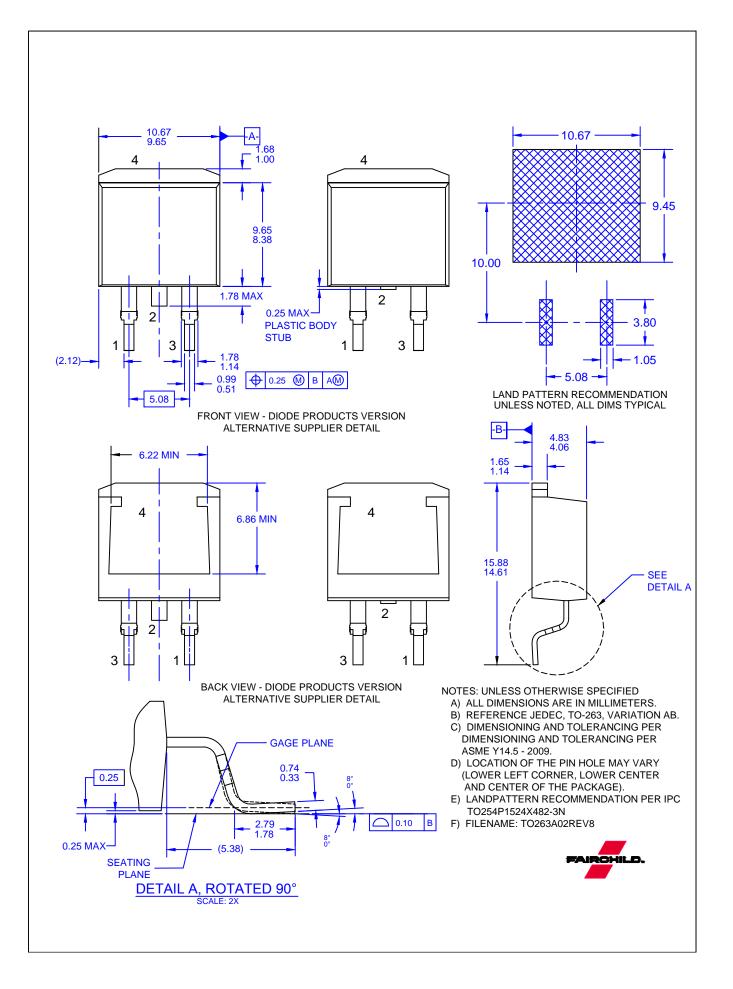
- -22 A, -100 V, R_{DS(on)} = 125 m Ω (Max) @V_{GS} = -10 V, I_D = -11 A
- Low Gate Charge (Typ. 40 nC)
- Low Crss (Typ. 160 pF)
- 100% Avalanche Tested
- 175°C Maximum Junction Temperature Rating

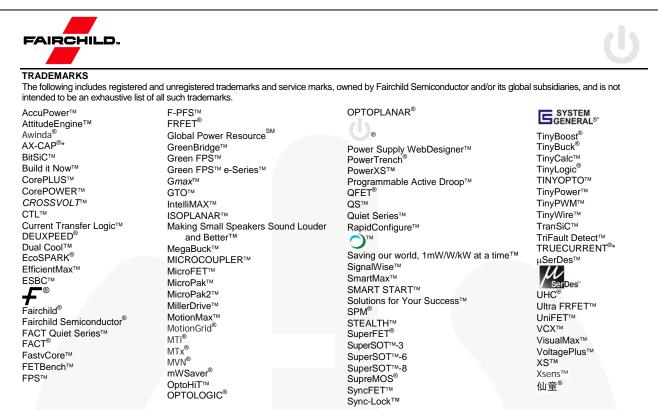

Absolute Maximum Ratings T_c = 25°C unless otherwise noted


Symbol	Parameter	FQB22P10TM	Unit		
V _{DSS}	Drain-Source Voltage		-100	V	
I _D	Drain Current - Continuous ($T_c = 25^\circ$	-22	A		
	- Continuous (T _C = 100	-15.6	А		
I _{DM}	Drain Current - Pulsed	(Note 1)	-88	A	
V _{GSS}	Gate-Source Voltage		±30		
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	710	mJ	
I _{AR}	Avalanche Current	(Note 1)	-22	A	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	12.5	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-6.0	V/ns	
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$	3.75	W		
	Power Dissipation $(T_C = 25^{\circ}C)$	125	W		
	- Derate above 25°C	0.83	W/°C		
T _J , T _{STG}	Operating and Storage Temperature Rai	-55 to +175			
TL	Maximum lead temperature for soldering 1/8" from case for 5 seconds	300	°C		


Thermal Characteristics


Symbol	Parameter	FQB22P10TM	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.2	
Rou	Thermal Resistance, Junction to Ambient (minimum pad of 2 oz copper), Max.	62.5	°C/W
	Thermal Resistance, Junction to Ambient (* 1 in ² pad of 2 oz copper), Max.	40	


Device MarkingDeviceFQB22P10FQB22P10TM		ing Device		ackage Reel Size		Tape Width		Quantity		
		FQB22P10TM	D	D2-PAK 330mm			24mm		800	
lectri	cal Cha	aracteristics T	- 25°C	unless otherwis	e noted					
Symbol		Parameter	<u> </u>		st Conditions		Min	Тур	Max	Unit
		4:00								
		ource Breakdown Voltage		$V_{aa} = 0 V$	I= = -250 µA		-100			V
BV _{DSS} ∆BV _{DSS}		0	•	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$			-100			v
$/ \Delta T_{J}$	Coefficie	wn Voltage Temperature ent		$I_D = -250 \ \mu\text{A}$, Referenced to 25°C				-0.1		V/°C
I _{DSS}	Zero Ga	te Voltage Drain Current		-	$V, V_{GS} = 0 V$				-1	μA
	· · · · ·			$V_{DS} = -80 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$					-10	μA
I _{GSSF}		dy Leakage Current, For			$V, V_{DS} = 0 V$	1			-100	nA
I _{GSSR}	Gate-Bo	dy Leakage Current, Rev	verse	V _{GS} = 30 \	/, V _{DS} = 0 V				100	nA
On Cha	aracteris	stics								
V _{GS(th)}	1	reshold Voltage		$V_{DS} = V_{GS}$, I _D = -250 μA		-2.0		-4.0	V
R _{DS(on)}		ain-Source			V, I _D = -11 A			0.096	0.125	Ω
9 _{FS}		Transconductance		V _{DS} = -40 V, I _D = -11 A				13.5		S
	ic Chara	acteristics								
							1			
	Input Ca	pacitance		V _{DS} = -25	V, V _{GS} = 0 V,			1170	1500	pF
C _{oss}	Output C	Capacitance		V _{DS} = -25 f = 1.0 MH				1170 460	1500 600	pF
C _{iss} C _{oss} C _{rss}	Output C									
C _{oss} C _{rss}	Output C Reverse	Capacitance						460	600	pF
C _{oss} C _{rss} Switchi	Output C Reverse	Capacitance Transfer Capacitance		f = 1.0 MH	Z			460	600	pF
C _{oss} C _{rss} Switch i t _{d(on)}	Output C Reverse ing Cha	Capacitance Transfer Capacitance racteristics		f = 1.0 MH V _{DD} = -50	z V, I _D = -22 A,			460 160	600 200	pF pF
C _{oss} C _{rss} Switchi t _{d(on)} t _r	Output C Reverse ing Cha Turn-On Turn-On	Capacitance Transfer Capacitance racteristics Delay Time		f = 1.0 MH	z V, I _D = -22 A,			460 160 17	600 200 45	pF pF ns
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)}	Output C Reverse ing Cha Turn-On Turn-On Turn-Off	Capacitance Transfer Capacitance racteristics Delay Time Rise Time		f = 1.0 MH V _{DD} = -50	z V, I _D = -22 A,	(Note 4)	 	460 160 17 170	600 200 45 350	pF pF ns
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time		f = 1.0 MH V _{DD} = -50 R _G = 25 Ω	z V, I _D = -22 A,	(Note 4)	 	460 160 17 170 60	600 200 45 350 130	pF pF ns ns ns
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off Turn-Off Total Ga	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time		f = 1.0 MH V _{DD} = -50 R _G = 25 Ω	z V, I _D = -22 A, V, I _D = -22 A,	. ,	 	460 160 17 170 60 110	600 200 45 350 130 230	pF pF ns ns ns
$\frac{C_{oss}}{C_{rss}}$ Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate-So	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time te Charge		f = 1.0 MH $V_{DD} = -50 \text{ R}_{G} = 25 \Omega$ $V_{DS} = -80$	z V, I _D = -22 A, V, I _D = -22 A,	(Note 4) (Note 4)	 	460 160 17 170 60 110 40	600 200 45 350 130 230 50	pF pF ns ns ns ns nc
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \end{array}$	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dra	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge		f = 1.0 MH $V_{DD} = -50$ $R_G = 25 \Omega$ $V_{DS} = -80$ $V_{GS} = -10$	z V, I _D = -22 A, V, I _D = -22 A, V	(Note 4)	 	460 160 17 170 60 110 40 7.0	600 200 45 350 130 230 50 	pF pF ns ns ns ns nc
C_{oss} C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dra	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge Diode Characteristi		f = 1.0 MH $V_{DD} = -50$ $R_G = 25 \Omega$ $V_{DS} = -80$ $V_{GS} = -10$ d Maxim	z V, $I_D = -22 A$, V, $I_D = -22 A$, V um Ratings	(Note 4)	 	460 160 17 170 60 110 40 7.0 21	600 200 45 350 130 230 50 	pF pF ns ns ns nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline \end{array} \\ \hline \begin{array}{c} \textbf{Switchi} \\ t_{d(on)} \\ t_{r} \\ \hline \\ t_{d(off)} \\ t_{f} \\ \hline \\ \hline \\ Q_{g} \\ \hline \\ Q_{gs} \\ \hline \\ Q_{gd} \\ \hline \\ $	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dra Ource E Maximur	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge Diode Characteristi m Continuous Drain-Sour	ce Dio	$f = 1.0 \text{ MH}$ $V_{DD} = -50$ $R_G = 25 \Omega$ $V_{DS} = -80$ $V_{GS} = -10$ $d \text{ Maxim}$ de Forward	z V, $I_D = -22 A$, V, $I_D = -22 A$, V Um Rating: Current	(Note 4)	 	460 160 17 170 60 110 40 7.0 21	600 200 45 350 130 230 50 22	pF pF ns ns ns nC nC nC
C _{oss} C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gg} Q _{gd} Drain-S I _S	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off Total Ga Gate-So Gate-Dra Source D Maximur Maximur	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge Diode Characteristi m Continuous Drain-Sour m Pulsed Drain-Source D	ce Dio Diode Fo	$f = 1.0 \text{ MH}$ $V_{DD} = -50$ $R_G = 25 \Omega$ $V_{DS} = -80$ $V_{GS} = -10$ $d \text{ Maxim}$ $de \text{ Forward Curr}$	z V, $I_D = -22 A$, V, $I_D = -22 A$, V um Rating: Current ent	(Note 4)	 	460 160 17 170 60 110 40 7.0 21 	600 200 45 350 130 230 50 22 -88	pF pF ns ns ns nC nC nC A A
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline \textbf{Switchi} \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ \hline Q_{g} \\ \hline Q_{gs} \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \hline \textbf{Drain-S} \\ \hline I_{S} \\ \hline I_{SM} \\ \hline V_{SD} \\ \hline \end{array}$	Output C Reverse ing Cha Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate-So Gate-Dra Source E Maximur Maximur Drain-Sc	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge Diode Characteristi m Continuous Drain-Source D purce Diode Forward Volt	ce Dio Diode Fo	$f = 1.0 \text{ MH}$ $V_{DD} = -50$ $R_G = 25 \Omega$ $V_{DS} = -80$ $V_{GS} = -10$ $de \text{ Forward}$ $de \text{ Forward Curr}$ $V_{GS} = 0 \text{ V},$	z V, $I_D = -22 A$, V, $I_D = -22 A$, V um Ratings Current ent $I_S = -22 A$	(Note 4)	 	460 160 17 170 60 110 40 7.0 21 	600 200 45 350 130 230 50 	pF pF ns ns ns nC nC nC A A V
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \end{array}$	Output C Reverse Turn-On Turn-Off Turn-Off Total Ga Gate-Dra Gate-Dra Gate-Dra Maximur Maximur Drain-Sc Reverse	Capacitance Transfer Capacitance racteristics Delay Time Rise Time Delay Time Fall Time te Charge urce Charge ain Charge Diode Characteristi m Continuous Drain-Sour m Pulsed Drain-Source D	ce Dio Diode Fo	$f = 1.0 \text{ MH}$ $V_{DD} = -50$ $R_G = 25 \Omega$ $V_{DS} = -80$ $V_{GS} = -10$ $d \text{ Maxim}$ $de \text{ Forward Curr}$	z V, $I_D = -22 A$, V, $I_D = -22 A$, V Um Ratings Current ent $I_S = -22 A$ $I_S = -22 A$,	(Note 4)	 	460 160 17 170 60 110 40 7.0 21 	600 200 45 350 130 230 50 22 -88	pF pF ns ns ns nC nC nC A A



* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: