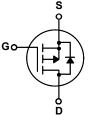


FQB34P10TM_F085 100V P-Channel MOSFET


General Description


These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as audio amplifier, high efficiency switching DC/DC converters, and DC motor control.

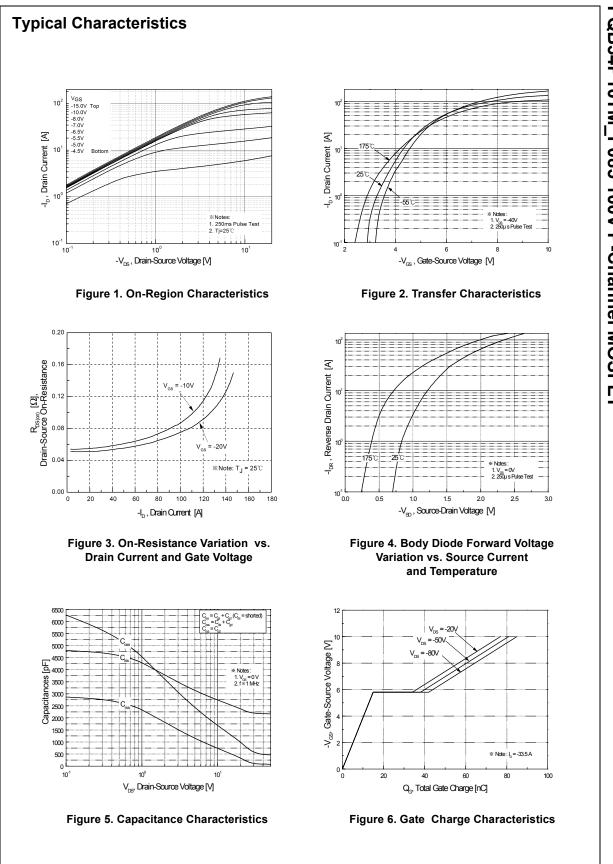
Features

- -33.5A, -100V, $R_{DS(on)} = 0.06\Omega @V_{GS} = -10 V$
- Low gate charge (typical 85 nC)
- Low Crss (typical 170 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability
- 175°C maximum junction temperature rating
- Qualified to AEC Q101
- RoHS Compliant

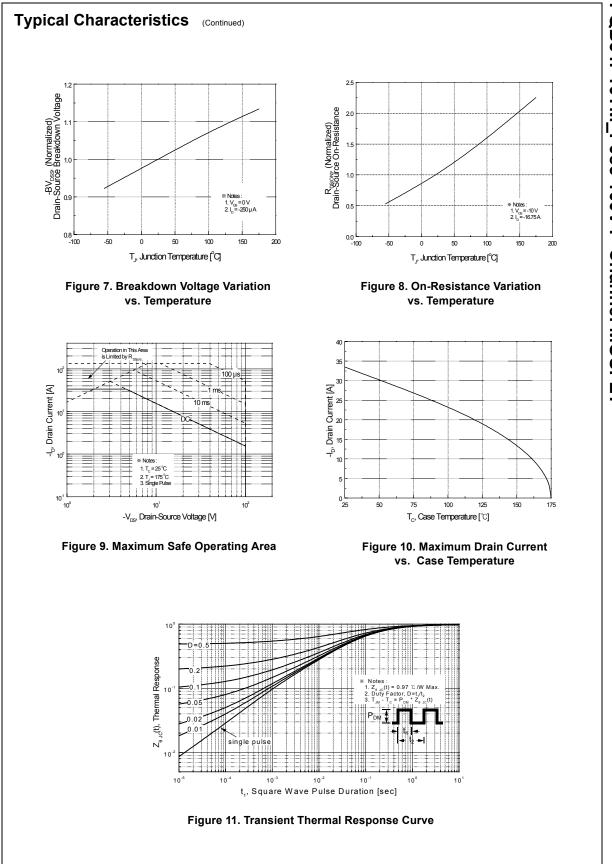
Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		FQB34P10TM_F085	Units
V _{DSS}	Drain-Source Voltage		-100	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$) - Continuous ($T_C = 100^{\circ}C$)		-33.5	А
			-23.5	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-134	А
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	2200	mJ
I _{AR}	Avalanche Current	(Note 1)	-33.5	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	15.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-6.0	V/ns
P _D	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.75	W
	Power Dissipation $(T_C = 25^{\circ}C)$		155	W
	- Derate above 25°C		1.03	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

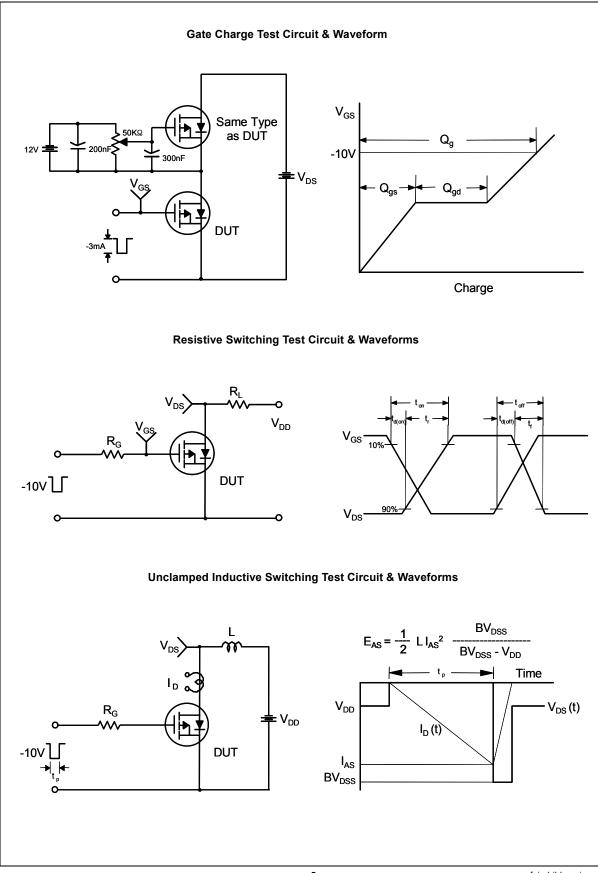
Thermal Characteristics

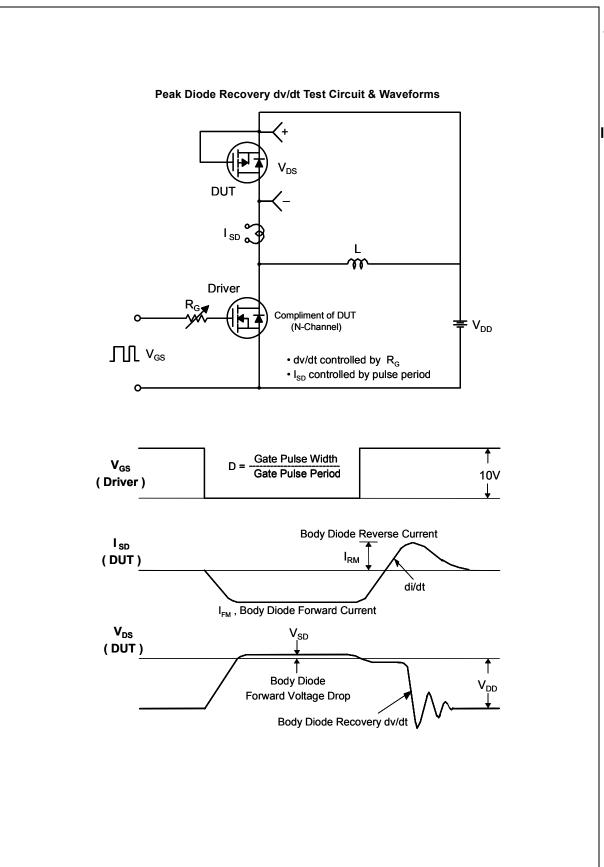

Symbol	Parameter	Тур	Max	Units	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.97	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W	

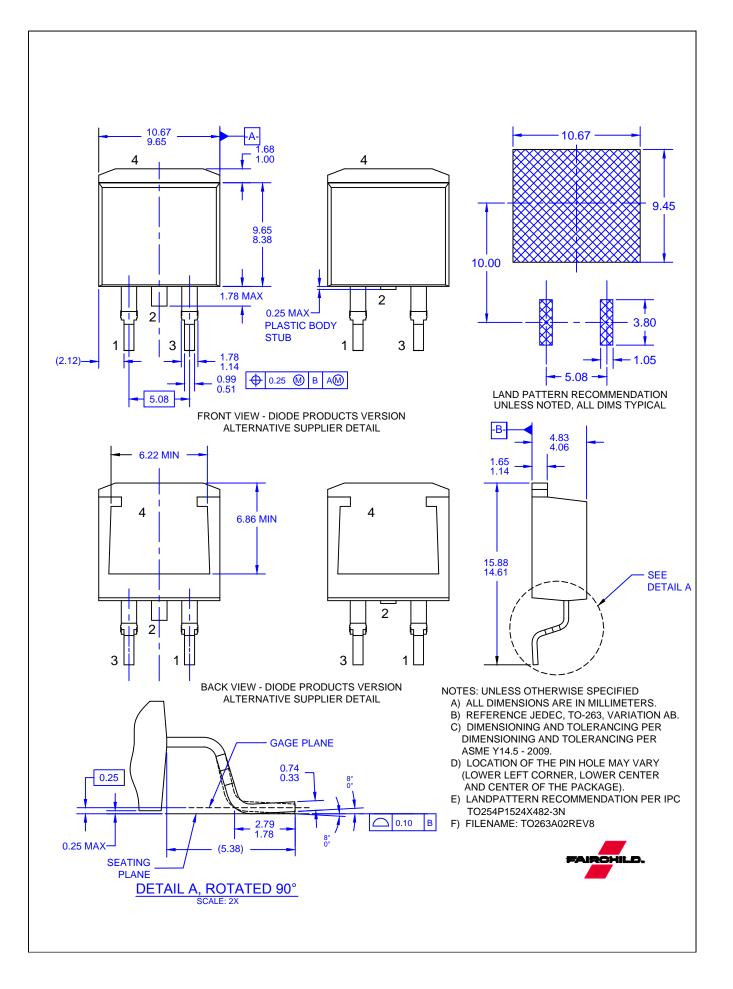
FQB34P10TM_F085 100V P-Channel MOSFET

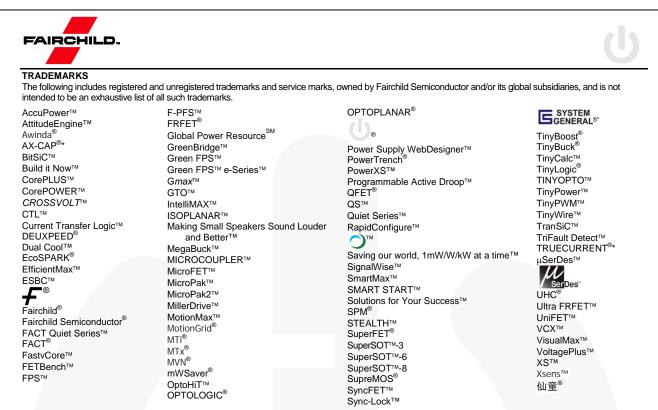

March 2016 QFET[™]

FREE


teristics ain-Source Breakdown Voltage eakdown Voltage Temperature efficient to Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source -Resistance	$\begin{split} V_{GS} &= 0 \ V, \ I_D = -250 \ \mu A \\ I_D &= -250 \ \mu A, \ Referenced \ to \ 25^\circ C \\ V_{DS} &= -100 \ V, \ V_{GS} &= 0 \ V \\ V_{DS} &= -80 \ V, \ T_C &= 150^\circ C \\ V_{GS} &= -25 \ V, \ V_{DS} &= 0 \ V \\ V_{GS} &= 25 \ V, \ V_{DS} &= 0 \ V \\ \end{split}$	-100 -2.0	 -0.1 	 -1 -10 -100 100	V V/°C μΑ μΑ nA
ain-Source Breakdown Voltage eakdown Voltage Temperature efficient to Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -100 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = -80 \ \text{V}, \ T_{C} = 150^{\circ}\text{C}$ $V_{GS} = -25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{GS} = 25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$		-0.1 	 -1 -10 -100	V/°C μA μA nA
eakdown Voltage Temperature efficient To Gate Voltage Drain Current te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$I_{D} = -250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -100 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = -80 \ \text{V}, \ T_{C} = 150^{\circ}\text{C}$ $V_{GS} = -25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{GS} = 25 \ \text{V}, \ V_{DS} = 0 \ \text{V}$			-10 -100	μA μA nA
te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$V_{DS} = -80 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$ $V_{GS} = -25 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$ $V_{GS} = 25 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-10 -100	μA nA
te-Body Leakage Current, Forward te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	$V_{GS} = -25 V, V_{DS} = 0 V$ $V_{GS} = 25 V, V_{DS} = 0 V$			-100	nA
te-Body Leakage Current, Reverse teristics te Threshold Voltage tic Drain-Source	V _{GS} = 25 V, V _{DS} = 0 V				
teristics te Threshold Voltage tic Drain-Source				100	nA
te Threshold Voltage tic Drain-Source	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-2 0			
te Threshold Voltage tic Drain-Source	V_{DS} = V_{GS} , I_D = -250 μ A	-2 0			
tic Drain-Source	D3 03, D - 1			-4.0	V
	1011 1011 10 1	-		-	
$V_{CS} = -10 V_{.1D} = -16.75 A$			0.049	0.06	Ω
ward Transconductance	V_{DS} = -40 V, I_{D} = -16.75 A (Note 4)		23		S
haraatariatioa					
land Operations			2240	2010	۳E
			-		pF pF
	f = 1.0 MHz				pr pF
n-On Delay Time	V _{DD} = -50 V, I _D = -33.5 A,		25	60	ns
n-On Rise Time	55 5		250	510	ns
n-Off Delay Time	(Note 4 E)		160	330	ns
	(NOLE 4, 5)		-		ns
al Gate Charge	V _{DS} = -80 V, I _D = -33.5 A,		85	110	nC
•	V _{GS} = -10 V				nC
te-Drain Charge	(Note 4, 5)		45		nC
ce Diode Characteristics a	nd Maximum Ratings				
	•			-33.5	А
ximum Pulsed Drain-Source Diode F	orward Current			-134	А
ximum Pulsed Drain-Source Diode F ain-Source Diode Forward Voltage	Forward Current V_{GS} = 0 V, I _S = -33.5 A			-134 -4.0	A V
			 160		
	n-On Rise Time n-Off Delay Time n-Off Fall Time al Gate Charge te-Source Charge te-Drain Charge	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHztput Capacitancef = 1.0 MHz Characteristics $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ R_G = 25 Ω n-On Delay Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ R_G = 25 Ω n-Off Fall Time $(Note 4, 5)$ al Gate Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ $V_{GS} = -10 \text{ V}$	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHztput Capacitancef = 1.0 MHzCharacteristicsn-On Delay Time n-On Rise Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ $R_G = 25 \Omega$ n-Off Delay Time n-Off Fall Time al Gate Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ te-Drain Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ te-Drain Charge $V_{OS} = -10 \text{ V}$ te Diode Characteristics and Maximum Ratings	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 2240 tput Capacitance f = 1.0 MHz 730 verse Transfer Capacitance 170 Characteristics 25 m n-On Delay Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 25 n-On Rise Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 250 n-Off Delay Time $(Note 4, 5)$ 160 n-Off Fall Time $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ 85 te-Source Charge $V_{GS} = -10 \text{ V}$ 15 te-Drain Charge (Note 4, 5) 45	ut Capacitance $V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ 2240 2910 tput Capacitance f = 1.0 MHz 730 950 verse Transfer Capacitance r = 1.0 MHz 170 220 Characteristics n-On Delay Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 25 60 n-On Rise Time $V_{DD} = -50 \text{ V}, I_D = -33.5 \text{ A},$ 250 510 n-Off Delay Time $R_G = 25 \Omega$ (Note 4, 5) 210 430 al Gate Charge $V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ 85 110 te-Source Charge $V_{GS} = -10 \text{ V}$ 45 te-Drain Charge (Note 4, 5) 45


FQB34P10TM_F085 100V P-Channel MOSFET


FQB34P10TM_F085 100V P-Channel MOSFET



FQB34P10TM_F085 Rev. 1.1

www.fairchildsemi.com

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FQB34P10TM_F085