

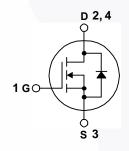
July 2016

FQD13N06L / FQU13N06L

N-Channel QFET® MOSFET

60 V, 11 A, 115 mΩ

Description


This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

Features

- 11 A, 60 V, $R_{DS(on)}$ = 115 m Ω (Max) @ V_{GS} = 10 V, I_{D} = 5.5 A
- Low Gate Charge (Typ. 4.8 nC)
- · Low Crss (Typ. 17 pF)
- 100% Avalanche Tested
- Low Level Gate Drive Requirements Allowing Direct Operation form Logic Drivers

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FQD13N06LTM / FQU13N06LTU FQU13N06LTU_WS	Unit	
V_{DSS}	Drain-Source Voltage		60	V	
I _D	Drain Current - Continuous (T _C = 25°C)		11	Α	
	- Continuous (T _C = 100°C)		7	Α	
I _{DM}	Drain Current - Pulsed	(Note 1)	44	Α	
V _{GSS}	Gate-Source Voltage		± 20	V	
E _{AS}	Single Pulsed Avalanche Energy (Not		90	mJ	
I _{AR}	Avalanche Current		11	Α	
E _{AR}	Repetitive Avalanche Energy (Not		2.8	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		7.0	V/ns	
P_{D}	Power Dissipation (T _A = 25°C) *		2.5	W	
	Power Dissipation (T _C = 25°C)		28	W	
- Derate above 25°C			0.22	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temperature for Soldering, 1/8" from Casefor Seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	FQD13N06LTM FQU13N06LTU FQU13N06LTU_WS	Unit			
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	2.5				
В	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	110	°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	50				

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FQD13N06LTM	FQD13N06L	D-PAK	Tape and Reel	330 mm	16 mm	2500 units
FQU13N06LTU	FQU13N06L	I-PAK	Tube	N/A	N/A	70 units
FQU13N06LTU_WS	FQU13N06LS	I-PAK	Tube	N/A	N/A	75 units

Electrical Characteristics T_c = 25°C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.05		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V			1	μΑ
		V _{DS} = 48 V, T _C = 150°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.0		2.5	V
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 5.5 A		0.092	0.115	
20(011)	On-Resistance	$V_{GS} = 5 \text{ V}, I_D = 5.5 \text{ A}$		0.115	0.145	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 25 V, I _D = 5.5 A		6		S
Dynam	ic Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		270	350	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		95	125	pF
C _{rss}	Reverse Transfer Capacitance			17	23	pF
Switch	ing Characteristics					
t _{d(on)}	Turn-On Delay Time	V = 20 V L = 0 0 A		8	25	ns
t _r	Turn-On Rise Time	$V_{DD} = 30 \text{ V}, I_{D} = 6.8 \text{ A},$ $R_{G} = 25 \Omega$		90	190	ns
t _{d(off)}	Turn-Off Delay Time	NG - 25 52		20	50	ns
t _f	Turn-Off Fall Time	(Note 4)		40	90	ns
Qg	Total Gate Charge	V _{DS} = 48 V, I _D = 13.6 A,	/	4.8	6.4	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 5 V		1.6		nC
Q _{gd}	Gate-Drain Charge	(Note 4)		2.7		nC
	ource Diode Characteristics a	nd Maximum Ratings		I		
I _S	Maximum Continuous Drain-Source Diode Forward Current				11	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				44	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 11 A			1.5	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 13.6 A,		45		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/μs		45	\	nC

- **Notes:** 1. Repetitive rating : pulse-width limited by maximum junction temperature. 2. L = 870 μ H, I_{AS} = 11 A, V_{DD} = 25 V, R_G = 25 Ω , starting T_J = 25°C. 3. I_{SD} \leq 13.6 A, di/dt \leq 300 A/ μ s, V_{DD} \leq BV_{DSS}, starting T_J = 25°C. 4. Essentially independent of operating temperature.

Typical Characteristics

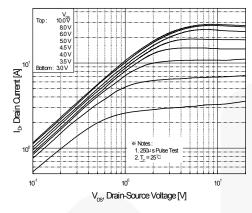


Figure 1. On-Region Characteristics

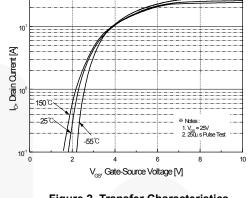


Figure 2. Transfer Characteristics



Figure 3. On-Resistance Variation vs. **Drain Current and Gate Voltage**

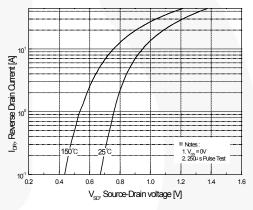


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

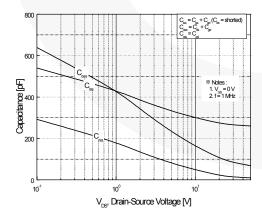


Figure 5. Capacitance Characteristics

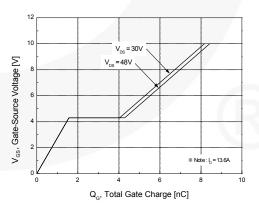


Figure 6. Gate Charge Characteristics

12 PV_{rss} 1.10 (Nomelized) 1.0 *Notes: 1.1.0 = 0.0 2.

0.8 L -100

-50

Typical Characteristics (Continued)

T_,, Junction Temperature [C]

Figure 7. Breakdown Voltage Variation
vs. Temperature

100

150

200

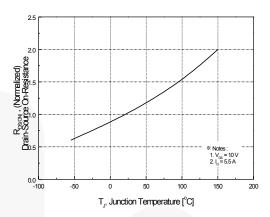


Figure 8. On-Resistance Variation vs. Temperature

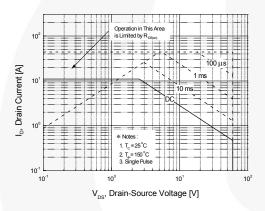


Figure 9. Maximum Safe Operating Area

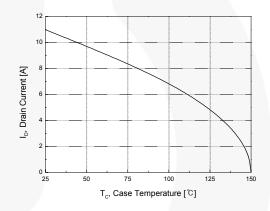


Figure 10. Maximum Drain Current vs. Case Temperature

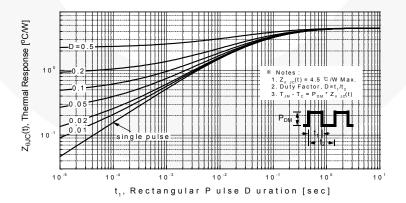


Figure 11. Transient Thermal Response Curve

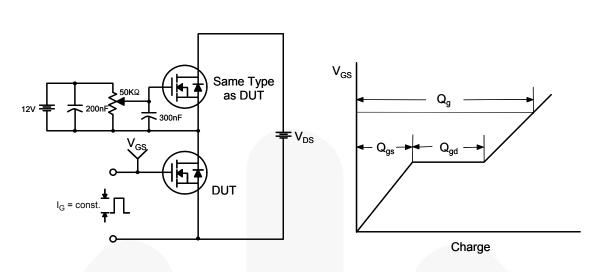


Figure 12. Gate Charge Test Circuit & Waveform

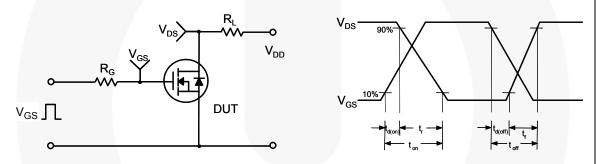


Figure 13. Resistive Switching Test Circuit & Waveforms

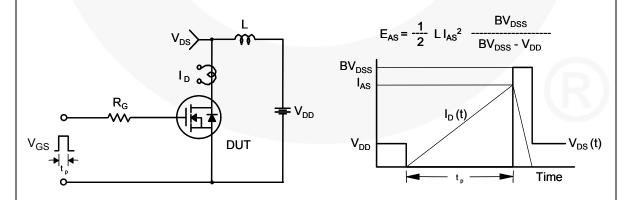
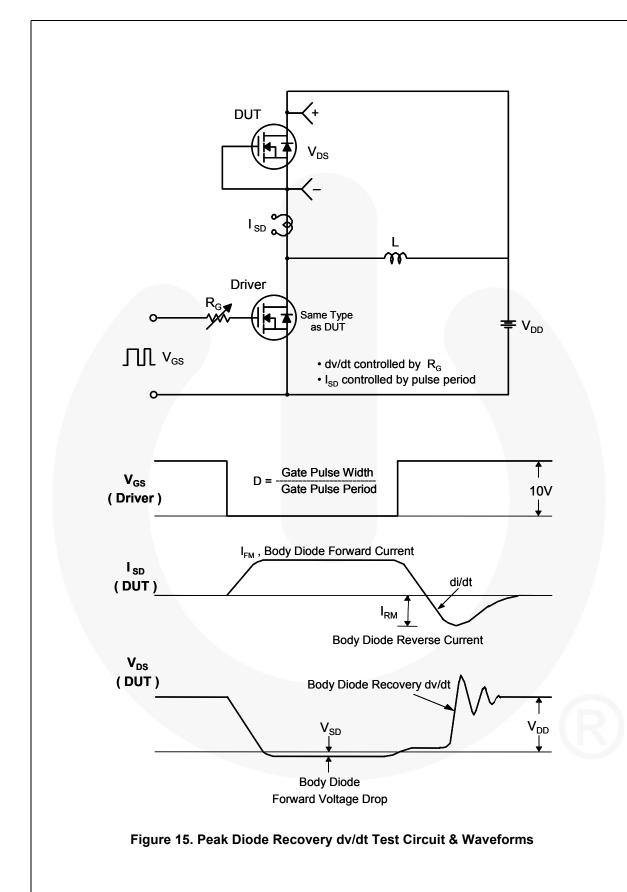
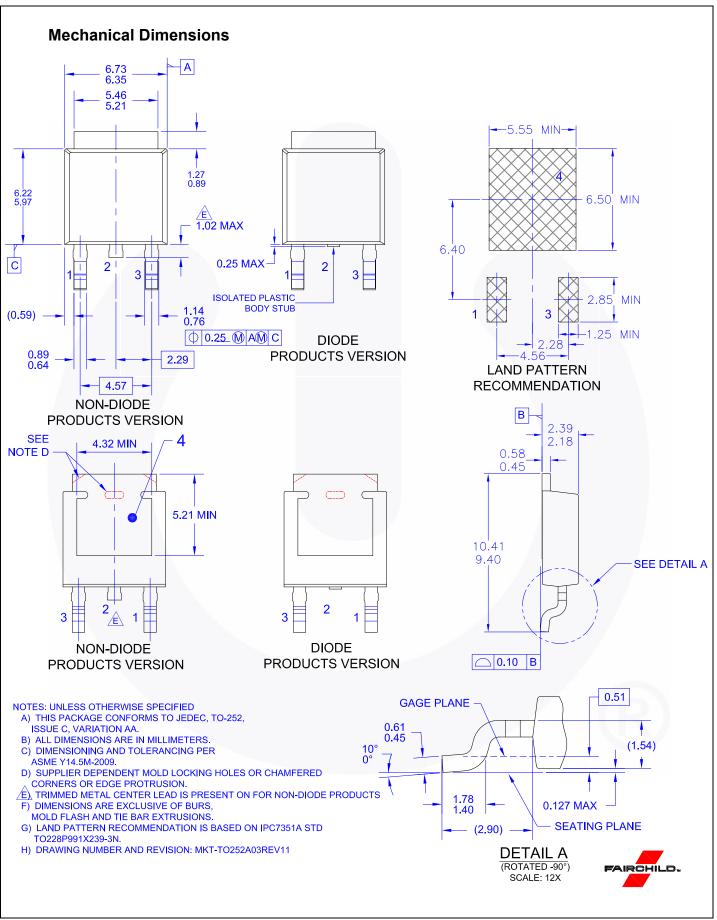




Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

Mechanical Dimensions

FQU13N06LTU

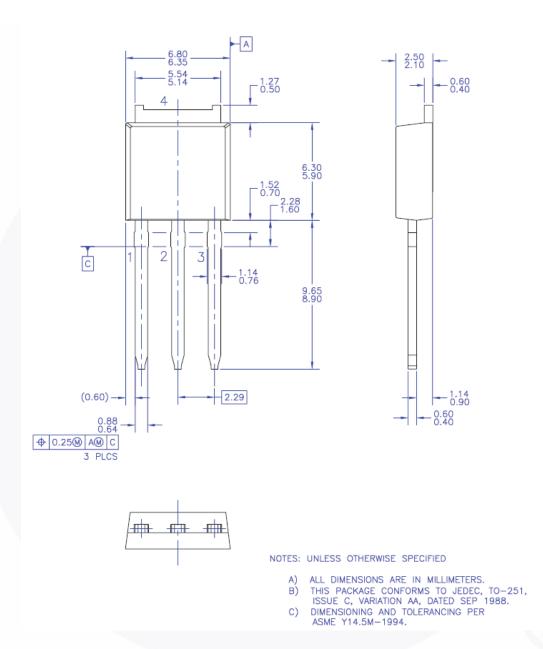


Figure 17. TO251 (I-PAK), Molded, 3-Lead

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO251-003

Mechanical Dimensions

FQU13N06LTU_WS

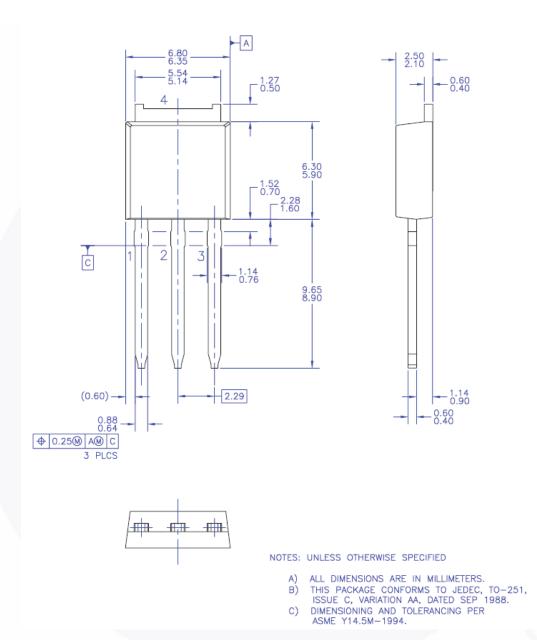


Figure 18. TO-251 (I-PAK), Molded, 3-Lead, Option AA

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT251-003

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AttitudeEngine™
Awinda®
AX-CAP®*
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™

CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™

DEUXPEED®
Dual Cool™
EcoSPARK®
EfficentMax™
ESBC™

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series™
FACT[®]

FACT®
FastvCore™
FETBench™
FPS™

F-PFS™ FRFET®

Global Power ResourceSM

GreenBridge™ Green FPS™ Green FPS™ e-Series™

Gmax[™] GTO[™] IntelliMAX[™] ISOPLANAR[™]

Marking Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MicroPak2™

MillerDrive™ MotionMax™ MotionGrid® MTi® MTx® MVN® mWSaver® OptoHiT™

OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™

PowerXS™

Programmable Active Droop™

QFET® QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM ®*
GENERAL
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®*

µSerDes™ ✓ SerDes™

UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
Xsens™
di童®

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com. Fairchild does not assume any Liability Arising out of the application or use of any product or circuit described herein; Neither does it convey any License under its patent rights, nor the rights of others. These specifications do not expand the terms of fairchild's worldwide terms and conditions, specifically the warranty therein, which covers these products.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild bistributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition		
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specification may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FQD13N06LTM