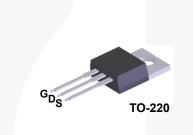
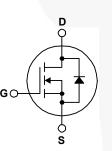


SEMICONDUCTOR®

December 2013


FQP13N10L N-Channel QFET[®] MOSFET 100 V, 12.8 A, 180 mΩ

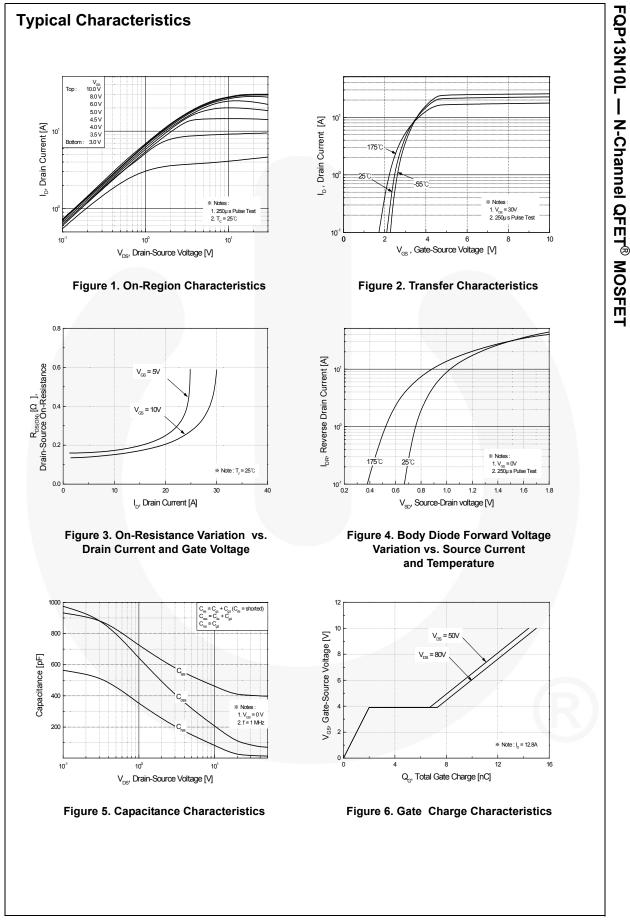

Description

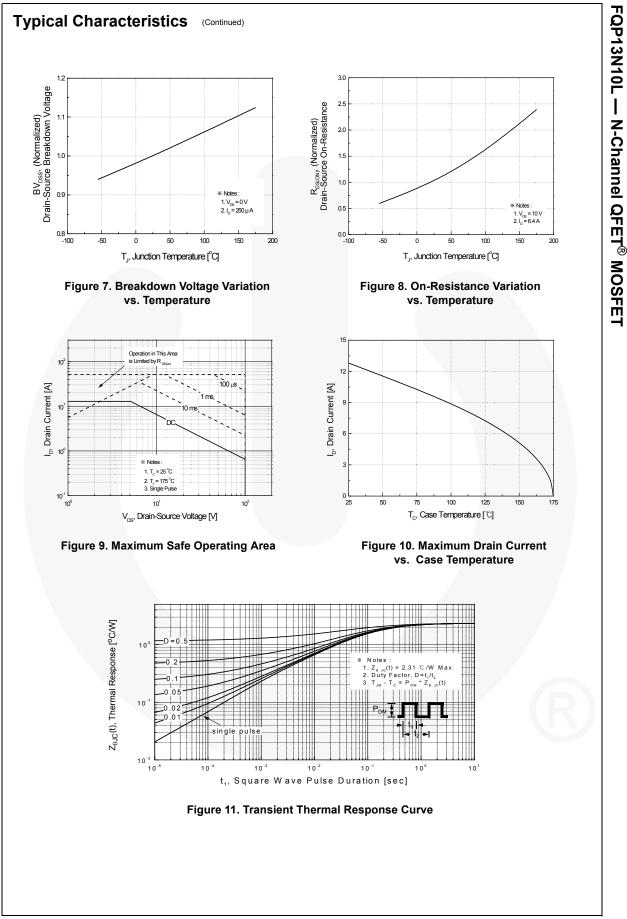
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

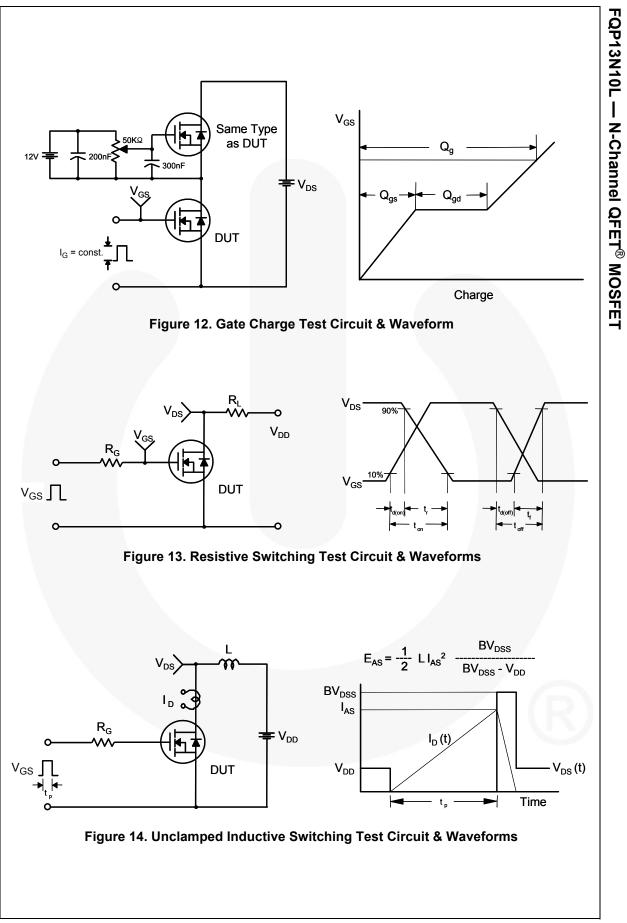
Features

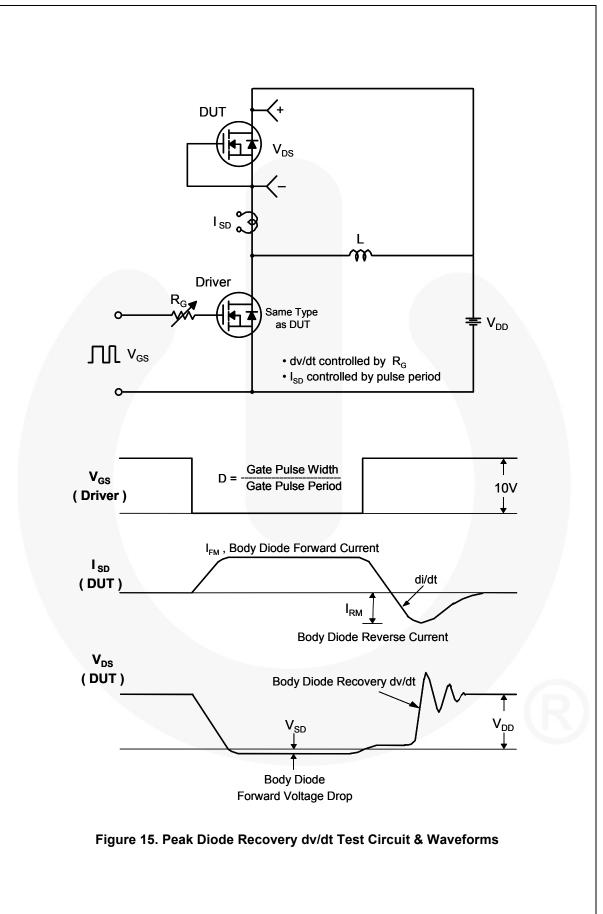
- 12.8 A, 100 V, $R_{DS(on)}$ = 180 m Ω (Max.) @ V_{GS} = 10 V, I_D = 6.4 A
- Low Gate Charge (Typ. 8.7 nC)
- Low Crss (Typ. 20 pF)
- 100% Avalanche Tested
- 175°C Maximum Junction Temperature Rating

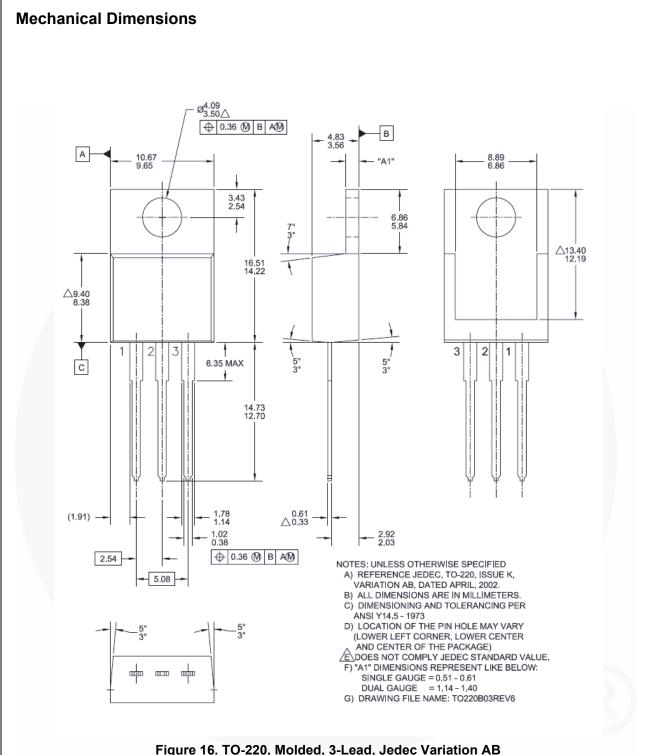
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.


Symbol		Parameter		FQP13N10L	Unit
V _{DSS}	Drain-Source V	oltage		100	V
I _D	Drain Current	- Continuous (T _C = 25°C)		12.8	А
		- Continuous (T _C = 100°C)		9.05	A
I _{DM}	Drain Current	- Pulsed	(Note 1)	51.2	A
V _{GSS}	Gate-Source Vo	bltage		± 20	V
E _{AS}	Single Pulsed A	valanche Energy	(Note 2)	95	mJ
I _{AR}	Avalanche Curr	ent	(Note 1)	12.8	A
E _{AR}	Repetitive Avala	anche Energy	(Note 1)	6.5	mJ
dv/dt	Peak Diode Re	covery dv/dt	(Note 3)	6.0	V/ns
P _D	Power Dissipati	on (T _C = 25°C)		65	W
		- Derate above 25°C		0.43	W/°C
T _J , T _{STG}	Operating and S	Storage Temperature Range		-55 to +175	°C
TL	Maximum lead 1/8" from case	temperature for soldering, for 5 seconds.		300	°C


Thermal Characteristics


Symbol	Parameter	FQP13N10L	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	2.31	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W


	Number	Part Number Top Mark Pa		kage Packing Method Reel		Size	Tape Width		Quantity	
			-220 Tube N/		A	N/A		50 units		
loctri	cal Cha	racteristics	T - 25%	Cupleon of	honving poted					
Symbol		Parameter	1 _C = 25 (, unless of	herwise noted Test Conditions		Min.	Тур.	Max.	Unit
-		4 a a		1		I				
BV _{DSS}	aracterist		200	V=	0 \/ I= = 250 uA		100			V
∆BV _{DSS}		Drain-Source Breakdown Voltage		V _{GS} = 0 V, I _D = 250 μA			100			v
$/\Delta T_{J}$	Coefficier	akdown Voltage Temperature		I_D = 250 µA, Referenced to 25°C				0.09		V/°C
I _{DSS}	Zero Gate Voltage Drain Current			V _{DS} =	100 V, V _{GS} = 0 V				1	μA
000				$V_{DS} = 80 \text{ V}, \text{ T}_{C} = 150^{\circ}\text{C}$					10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward		$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$					100	nA	
I _{GSSR}		y Leakage Current,			-20 V, V _{DS} = 0 V				-100	nA
			_		-					-
On Cha	racterist	tics								
V _{GS(th)}	Gate Thre	eshold Voltage			V_{GS} , $I_D = 250 \ \mu A$		1.0		2.0	V
R _{DS(on)}		in-Source		00	10 V, I _D = 6.4 A			0.142	0.18	Ω
	On-Resis				5 V, I _D = 6.4 A			0.158	0.2	
9 _{FS}	Forward 7	Fransconductance		V _{DS} =	30 V, I _D = 6.4 A			9.5		S
Dunom	ie Chara	cteristics								
C _{iss}	1		_					400	520	pF
		Input Capacitance Output Capacitance Reverse Transfer Capacitance		$V_{\rm DS} = 25 \text{ V}, V_{\rm GS} = 0 \text{ V},$						
										nE
			<u>م</u>	f = 1.0) MHz			95 20	125 25	pF
C _{oss} C _{rss}			e	f = 1.0) MHz			95 20	25	pF pF
C _{rss}	Reverse		e	f = 1.0) MHz					
C _{rss} Switchi	Reverse	Transfer Capacitanc	e							
C _{rss} Switchi t _{d(on)}	Reverse	Transfer Capacitanc acteristics Delay Time	e	- V _{DD} =	50 V, I _D = 12.8 A,			20	25	pF
C _{rss} Switchi t _{d(on)} t _r	Reverse Ting Char Turn-On I Turn-On F	Transfer Capacitanc acteristics Delay Time	e		50 V, I _D = 12.8 A,			20 7.5	25 25	pF ns
C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$	Reverse Ting Char Turn-On I Turn-On F	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time	e	- V _{DD} =	50 V, I _D = 12.8 A,	(Note 4)		20 7.5 220	25 25 450	ns ns
C _{rss} Switch ^t d(on) t _r ^t d(off) t _f	Reverse T Turn-On I Turn-On F Turn-Off I	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time	e	V _{DD} =	50 V, I _D = 12.8 A, 25 Ω	(Note 4)		20 7.5 220 22	25 25 450 55	pF ns ns ns
C _{rss} Switch t _{d(on)} t _r t _{d(off)} t _f Q _g	Reverse ing Char Turn-On I Turn-On F Turn-Off I Turn-Off I Turn-Off I	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time	e	V _{DD} = R _G = 2 V _{DS} =	50 V, I _D = 12.8 A, 25 Ω 80 V, I _D = 12.8 A,	(Note 4)		20 7.5 220 22 72	25 25 450 55 150	ns ns ns ns
$\frac{C_{rss}}{Switch}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_g}{Q_{gs}}$	Reverse ing Char Turn-On I Turn-On F Turn-Off I Turn-Off I Turn-Off I	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time e Charge rce Charge	e	V _{DD} =	50 V, I _D = 12.8 A, 25 Ω 80 V, I _D = 12.8 A,	(Note 4)	 	20 7.5 220 22 72 8.7	25 25 450 55 150 12	pF ns ns ns ns nC
$\frac{C_{rss}}{Switch}$ $\frac{f_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_g}{Q_{gs}}$ $\frac{Q_{gg}}{Q_{gd}}$	Reverse ing Char. Turn-On I Turn-Off I Turn-Off I Turn-Off G Total Gate Gate-Sou Gate-Drai	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time a Charge Irce Charge in Charge		V _{DD} = R _G = 2 V _{DS} = V _{GS} =	50 V, I _D = 12.8 A, 25 Ω 80 V, I _D = 12.8 A, 5 V	. ,	 	20 7.5 220 22 72 8.7 2.0	25 25 450 55 150 12 	ns ns ns ns nC nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{t_{d(off)}}{Q_{gs}}$ Q_{gd} Drain-S	Reverse ing Char Turn-On I Turn-Off I Turn-Off I Turn-Off I Total Gate Gate-Sou Gate-Dra	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time e Charge rice Charge in Charge	istics a	V _{DD} = R _G = 2 V _{DS} = V _{GS} =	50 V, I _D = 12.8 A, 25 Ω 80 V, I _D = 12.8 A, 5 V ximum Ratings	. ,		20 7.5 220 22 72 8.7 2.0 5.3	25 25 450 55 150 12 	ns ns ns ns nC nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{t_{d(off)}}{Q_{gs}}$ $\frac{Q_{gs}}{Q_{gd}}$ $\frac{Drain-S}{I_{S}}$	Reverse ing Char Turn-On I Turn-Off I Turn-Off I Total Gate Gate-Sou Gate-Dra	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time e Charge rce Charge in Charge in Charge	i stics a	$V_{DD} = R_{G} = 2$ $V_{DS} = V_{GS} = 0$ $N_{GS} = 0$	50 V, $I_D = 12.8 \text{ A},$ 25 Ω 80 V, $I_D = 12.8 \text{ A},$ 5 V ximum Ratings vard Current	. ,	 	20 7.5 220 22 72 8.7 2.0 5.3	25 25 450 55 150 12 12.8	pF ns ns ns nC nC nC A
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_{gg}}{Q_{gg}}$ $\frac{Q_{gg}}{Drain-S}$ $\frac{I_S}{I_{SM}}$	Reverse ing Char Turn-On I Turn-Off I Turn-Off I Turn-Off G Total Gate Gate-Sou Gate-Drai Source D Maximum	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time a Charge rce Charge in Charge in Charge iode Character a Continuous Drain-Source	i stics a Source Dic ce Diode F	$V_{DD} = R_{G} = 2$ $V_{DS} = V_{GS} = 0$ $V_{GS} = 0$	50 V, I_D = 12.8 A, 25 Ω 80 V, I_D = 12.8 A, 5 V ximum Ratings vard Current Current	. ,	 	20 7.5 220 22 72 8.7 2.0 5.3	25 450 55 150 12 12.8 51.2	ns ns ns ns nc nC A
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_r}{t_q}$ $\frac{C_{gg}}{Q_{gg}}$ $\frac{Q_{gg}}{Q_{gg}}$ $\frac{Drain-S}{I_{SM}}$ V_{SD}	Reverse ing Char. Turn-On I Turn-Off I Turn-Off I Turn-Off I Total Gate Gate-Sou Gate-Drai Cource D Maximum Maximum Drain-Sou	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time a Charge Tree Charge in Charge in Charge iode Character Continuous Drain-Sourd Pulsed Drain-Sourd urce Diode Forward	i stics a Source Dic ce Diode F	$V_{DD} = R_{G} = 2$ $V_{DS} = V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$ $V_{GS} = 0$	50 V, I_D = 12.8 A, 25 Ω 80 V, I_D = 12.8 A, 5 V ximum Ratings vard Current Current 0 V, I_S = 12.8 A	. ,	 	20 7.5 220 22 72 8.7 2.0 5.3	25 25 450 55 150 12 12.8	ns ns ns ns nc nC nC A A V
$\frac{C_{rss}}{Switch}$ $\frac{f_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_g}{Q_{gs}}$ $\frac{Q_{gg}}{Q_{gd}}$	Reverse ing Char Turn-On I Turn-Off I Turn-Off I Turn-Off I Total Gate Gate-Sou Gate-Drai Gate-Drai Maximum Maximum Drain-Sou Reverse I	Transfer Capacitanc acteristics Delay Time Rise Time Delay Time Fall Time a Charge rce Charge in Charge in Charge iode Character a Continuous Drain-Source	i stics a Source Dic ce Diode F	$V_{DD} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	50 V, I_D = 12.8 A, 25 Ω 80 V, I_D = 12.8 A, 5 V ximum Ratings vard Current Current	. ,	 	20 7.5 220 22 72 8.7 2.0 5.3	25 450 55 150 12 12.8 51.2	pF ns ns ns nc nC nC A


FQP13N10L — N-Channel QFET[®] MOSFET

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

Advance Information	Formative / In Design	may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I66

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: