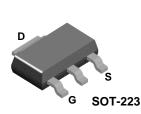
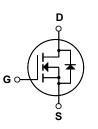
FAIRCHILD

SEMICONDUCTOR®


FQT7N10 N-Channel QFET[®] MOSFET 100 V, 1.7 A, 350 mΩ


Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

Features

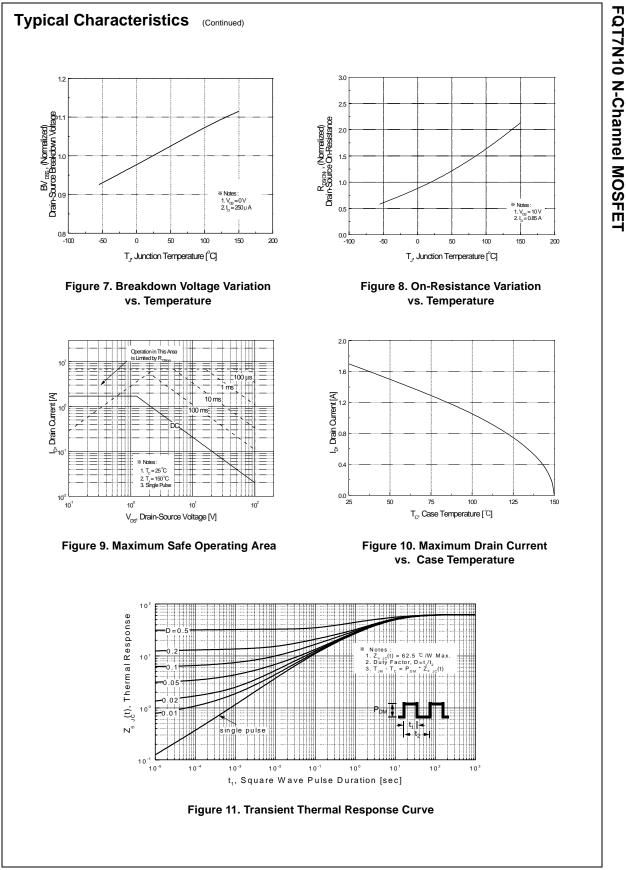
- 1.7 A, 100 V, $R_{DS(on)}$ =350 m Ω (Max.) @V_{GS}=10 V, I_D=0.85 A
- Low Gate Charge (Typ. 5.8 nC)
- Low Crss (Typ. 10 pF)
- 100% Avalanche Tested

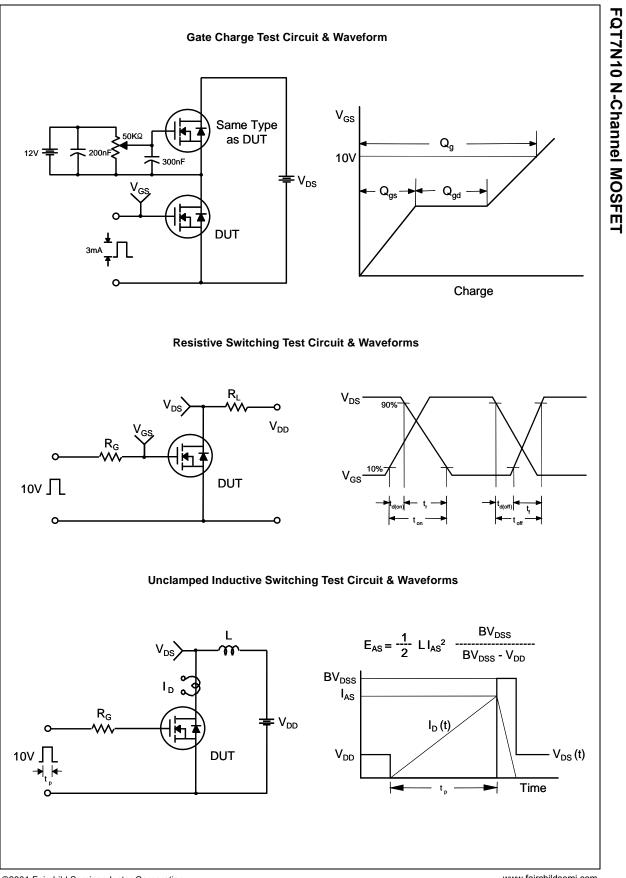
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQT7N10	Unit
V _{DSS}	Drain-Source Voltage		100	V
D	Drain Current - Continuous (T _C = 25	°C)	1.7	А
	- Continuous (T _C = 70°C)		1.36	А
DM	Drain Current - Pulsed	(Note 1)	6.8	А
V _{GSS}	Gate-Source Voltage		± 25	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	50	mJ
AR	Avalanche Current	(Note 1)	1.7	А
AR	Repetitive Avalanche Energy	(Note 1)	0.2	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.0	V/ns
PD	Power Dissipation ($T_C = 25^{\circ}C$)		2.0	W
	- Derate above 25°C	0.016	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
ΓL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

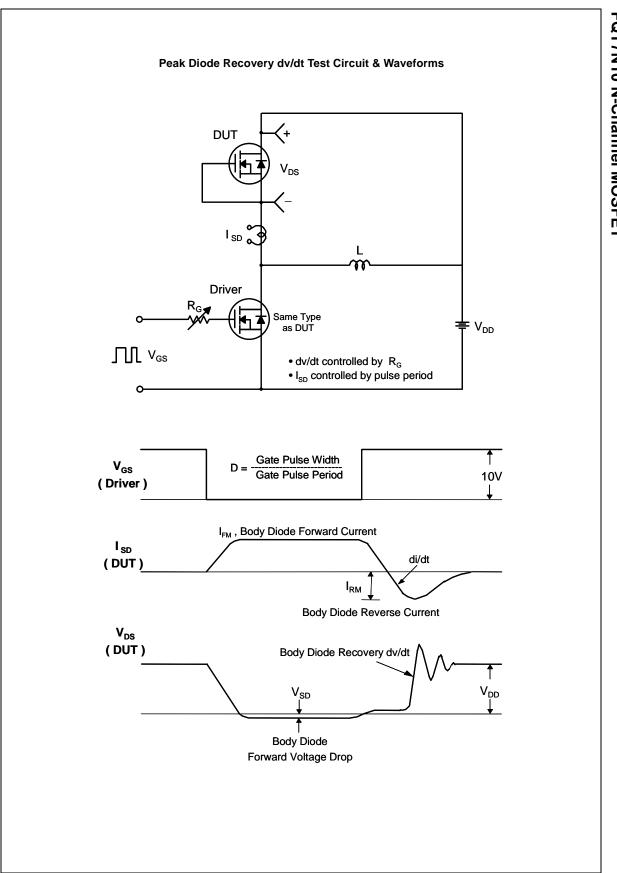
Thermal Characteristics

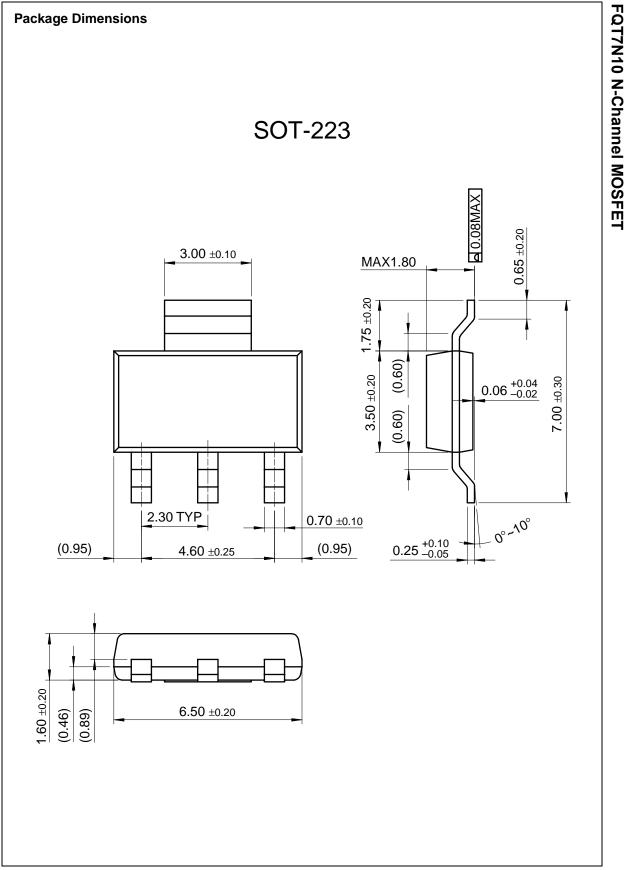
Symbol	Parameter	Тур	Max	Unit
R _{0JA}	Thermal Resistance, Junction-to-Ambient *		62.5	°C/W


March 2013


$ \begin{array}{c c} \Delta BV_{DSS} \\ \Delta T_J \\ \hline \\ \Delta T_J \\ \hline \\ Coefficient \\ \hline \\ Coss \\ \hline \\ Coefficient \\ \hline \hline \\ Coefficient \\ \hline \\ Coeffi$	I to 25°C	100 2.0 	 0.1 0.28 1.85 190 60 10	 1 100 100 -100 4.0 0.35 250 75 13 25	V V/°C μA ηA nA NA NA PF pF pF ns
$\begin{array}{ c c c c } BV_{DSS} & Drain-Source Breakdown Voltage & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A \\ \hline \Delta BV_{DSS} & Breakdown Voltage Temperature \\ (\ \Delta T_J & Coefficient & I_D = 250 \ \mu A, \ Referenced \\ \hline I_D = 250 \ \mu A, \ Referenced \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 80 \ V, \ T_C = 125^{\circ}C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^{\circ}C \\ \hline I_{GSSF} & Gate-Body \ Leakage \ Current, \ Forward & V_{GS} = 25 \ V, \ V_{DS} = 0 \ V \\ \hline I_{GSSR} & Gate-Body \ Leakage \ Current, \ Reverse & V_{GS} = -25 \ V, \ V_{DS} = 0 \ V \\ \hline On \ Characteristics \\ \hline V_{GS(th)} & Gate \ Threshold \ Voltage & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A \\ \hline R_{DS(on)} & Static \ Drain-Source \\ On-Resistance & V_{DS} = 10 \ V, \ I_D = 0.85 \ A \\ \hline g_{FS} & Forward \ Transconductance & V_{DS} = 40 \ V, \ I_D = 0.85 \ A \\ \hline Dynamic \ Characteristics \\ \hline C_{iss} & Input \ Capacitance \\ \hline C_{rss} & Reverse \ Transfer \ Capacitance \\ \hline C_{rss} & Reverse \ Transfer \ Capacitance \\ \hline Switching \ Characteristics \\ \hline t_{d(off)} & Turn-On \ Delay \ Time \\ \hline t_r & Turn-On \ Rise \ Time \\ \hline t_{d(off)} & Turn-Off \ Delay \ Time \\ \hline t_{d(off)} & Turn-Off \ Delay \ Time \\ \hline t_{d(off)} & Turn-Off \ Fall \ Time \\ \hline Q_g & Total \ Gate \ Charage \\ \hline V_{DS} = 80 \ V, \ I_D = 7.3 \ A, \\ \hline R_{OS} = 80 \ V_{OS} =$		 2.0 	0.1 0.28 1.85 190 60 10	 1 100 -100 4.0 0.35 250 75 13	V/°C μA ηA ηA Ν Ω S PF pF pF
$ \begin{array}{c c c c c c c } \hline \Delta BV_{DS} & Breakdown Voltage Temperature & I_D = 250 \ \mu\text{A}, \ Reference & V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline V_{DS} = 80 \ V, \ T_C = 125^\circ C \\ \hline On \ Characteristics \\ \hline V_{DS} = 60 \ V, \ V_{DS} = 0 \ V \\ \hline On \ Characteristics \\ \hline V_{DS} = 0 \ V, \ V_{DS} = 0 \ V \\ \hline On \ Characteristics \\ \hline V_{DS} = 10 \ V, \ I_D = 250 \ \mu A \\ \hline V_{DS} = 10 \ V, \ I_D = 0.85 \ A \\ \hline Dynamic \ Characteristics \\ \hline C_{iss} & Input \ Capacitance \\ \hline V_{DS} = 25 \ V, \ V_{GS} = 0 \ V, \\ \hline f = 1.0 \ MHz \\ \hline C_{rss} & Reverse \ Transfer \ Capacitance \\ \hline Switching \ Characteristics \\ \hline t_{d(on)} & Turn-On \ Rise \ Time \\ \hline t_r & Turn-On \ Rise \ Time \\ \hline t_{d(off)} & Turn-Off \ Delay \ Time \\ \hline t_{d(off)} & Turn-Off \ Fall \ Time \\ \hline Q_g & Total \ Gate \ Charage \\ \hline V_{DS} = 80 \ V, \ I_D = 7.3 \ A, \\ \hline R_{G} = 25 \ \Omega \\ \hline V_{DS} = 80 \ V, \ I_D = 7.3 \ A, \\ \hline R_{G} = 25 \ \Omega \\ \hline V_{DS} = 80 \ V, \ I_D = 7.3 \ A, \\ \hline R_{C} = 25 \ \Omega \\ \hline V_{DS} = 80 \ V, \ I_D = 7.3 \ A, \\ \hline R_{C} = 25 \ \Omega \\ \hline V_{DS} = 80 \ V, \ I_D = 7.3 \ A, \\ \hline R_{C} = 25 \ \Omega \\ \hline V_{DS} = 80 \ V, \ I_D = 7.3 \ A, \\ \hline R_{C} = 1.0 \ M_{CS} = 1.0 \ A \ A \ B \ A \ B \ A \ B \ A \ B \ A \ B \ A \ B \ A \ B \ A \ B \ A \ B \ A \ B \ A \ A$		 2.0 	 0.28 1.85 190 60 10	1 100 -100 0.35 250 75 13	μΑ μΑ nA nA V Ω S PF pF
Zero Gate Voltage Drain Current $V_{DS} = 80 \text{ V}, \text{T}_{C} = 125^{\circ}\text{C}$ I_{GSSF} Gate-Body Leakage Current, Forward $V_{GS} = 25 \text{ V}, V_{DS} = 0 \text{ V}$ I_{GSSR} Gate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ On Characteristics V_{GS} $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$ $V_{GS}(th)$ Gate Threshold Voltage $V_{DS} = 10 \text{ V}, I_D = 0.85 \text{ A}$ $P_{DS}(on)$ Static Drain-Source On-Resistance $V_{DS} = 40 \text{ V}, I_D = 0.85 \text{ A}$ g_{FS} Forward Transconductance $V_{DS} = 40 \text{ V}, I_D = 0.85 \text{ A}$ Dynamic Characteristics $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_D = 0.85 \text{ A}$ C_{iss} Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_f = 1.0 \text{ MHz}$ C_{rss} Reverse Transfer Capacitance $V_{DD} = 50 \text{ V}, I_D = 7.3 \text{ A}, R_G = 25 \Omega$ $t_{d(off)}$ Turn-Off Delay Time $V_{DS} = 80 \text{ V}, I_D = 7.3 \text{ A}, R_G = 25 \Omega$	(Note 4)	 2.0 	 0.28 1.85 190 60 10	10 100 -100 0.35 250 75 13	μA nA nA V Ω S PF pF
	(Note 4)	 2.0 	 0.28 1.85 190 60 10	100 -100 4.0 0.35 250 75 13	nA nA V Ω S PF pF pF
IGSSRGate-Body Leakage Current, Reverse $V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$ On Characteristics $V_{GS(th)}$ Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250 \mu \text{A}$ $R_{DS(on)}$ Static Drain-Source On-Resistance $V_{GS} = 10 \text{ V}, I_D = 0.85 \text{ A}$ g_{FS} Forward Transconductance $V_{DS} = 40 \text{ V}, I_D = 0.85 \text{ A}$ Dynamic Characteristics $V_{DS} = 40 \text{ V}, I_D = 0.85 \text{ A}$ Dynamic Characteristics $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_D = 0.85 \text{ A}$ Dynamic Characteristics $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_f = 1.0 \text{ MHz}$ C_{oss} Output Capacitance C_{rss} $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_f = 1.0 \text{ MHz}$ Switching Characteristics $V_{DD} = 50 \text{ V}, I_D = 7.3 \text{ A}, I_f$ $T_{d(off)}$ Turn-On Rise Time $T_{d(off)}$ $V_{DS} = 80 \text{ V}, I_D = 7.3 \text{ A}, I_f$ T_q Turn-Off Fall Time Q_g $V_{DS} = 80 \text{ V}, I_D = 7.3 \text{ A}, I_f$	(Note 4)	 2.0 	 0.28 1.85 190 60 10	-100 4.0 0.35 250 75 13	nA V Ω S PF pF
On Characteristics $V_{GS}(th)$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ $R_{DS}(on)$ Static Drain-Source On-Resistance $V_{GS} = 10 V$, $I_D = 0.85 A$ g_{FS} Forward Transconductance $V_{DS} = 40 V$, $I_D = 0.85 A$ Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25 V$, $V_{GS} = 0 V$, C_{oss} Output Capacitance $V_{DS} = 25 V$, $V_{GS} = 0 V$, C_{rss} Reverse Transfer Capacitance $f = 1.0 \text{MHz}$ C_{rss} Reverse Transfer Capacitance $V_{DD} = 50 V$, $I_D = 7.3 A$, $t_{q}(on)$ Turn-On Rise Time $V_{DD} = 50 V$, $I_D = 7.3 A$, $t_{q}(off)$ Turn-Off Delay Time $V_{DS} = 80 V$, $I_D = 7.3 A$, q_g Total Gate Charge $V_{DS} = 80 V$, $I_D = 7.3 A$,	(Note 4)	2.0 	 0.28 1.85 190 60 10	4.0 0.35 250 75 13	V Ω S PF PF
	(Note 4)	 	0.28 1.85 190 60 10	0.35 250 75 13	Ω S pF pF
	(Note 4)	 	0.28 1.85 190 60 10	0.35 250 75 13	Ω S pF pF
On-ResistanceVGS = 10 V, ID = 0.00 A g_{FS} Forward Transconductance $V_{DS} = 40 V, I_D = 0.85 A$ Dynamic CharacteristicsV C_{iss} Input Capacitance $V_{DS} = 25 V, V_{GS} = 0 V, f = 1.0 MHz$ C_{rss} Reverse Transfer Capacitance $f = 1.0 MHz$ C_{rss} Reverse Transfer Capacitance $V_{DD} = 50 V, I_D = 7.3 A, R_G = 25 \Omega$ $t_{d(off)}$ Turn-On Rise Time $R_G = 25 \Omega$ t_f Turn-Off Delay Time $V_{DS} = 80 V, I_D = 7.3 A, R_G = 25 \Omega$	(Note 4)		1.85 190 60 10	 250 75 13	PF PF PF
Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ C_{oss} Output Capacitance $f = 1.0 \text{ MHz}$ C_{rss} Reverse Transfer Capacitance $f = 1.0 \text{ MHz}$ Switching Characteristics $V_{DD} = 50 \text{ V}, I_D = 7.3 \text{ A},$ $t_{d(off)}$ Turn-On Rise Time $R_G = 25 \Omega$ $t_{d(off)}$ Turn-Off Delay Time $R_G = 25 \Omega$ t_{f} Turn-Off Fall Time $V_{DS} = 80 \text{ V}, I_D = 7.3 \text{ A},$ Q_g Total Gate Charge $V_{DS} = 80 \text{ V}, I_D = 7.3 \text{ A},$	(Note 4)		190 60 10	250 75 13	pF pF pF
$\begin{tabular}{ c c c c c c } \hline C_{iss} & Input Capacitance & V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \\ \hline C_{oss} & Output Capacitance & f = 1.0 \text{ MHz} \\ \hline C_{rss} & Reverse Transfer Capacitance & f = 1.0 \text{ MHz} \\ \hline \hline Switching Characteristics & & \\ \hline t_{d(on)} & Turn-On Delay Time & V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7.3 \text{ A}, \\ \hline t_{r} & Turn-On Rise Time & & \\ \hline t_{d(off)} & Turn-Off Delay Time & & \\ \hline t_{f} & Turn-Off Fall Time & & \\ \hline Q_{g} & Total Gate Charge & & V_{DS} = 80 \text{ V}, \text{ I}_{D} = 7.3 \text{ A}, \\ \hline \end{tabular}$			60 10	75 13	pF pF
$\begin{tabular}{ c c c c c c } \hline C_{iss} & Input Capacitance & V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \\ \hline C_{oss} & Output Capacitance & f = 1.0 \text{ MHz} \\ \hline C_{rss} & Reverse Transfer Capacitance & f = 1.0 \text{ MHz} \\ \hline \hline Switching Characteristics & & \\ \hline t_{d(on)} & Turn-On Delay Time & V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7.3 \text{ A}, \\ \hline t_{r} & Turn-On Rise Time & & \\ \hline t_{d(off)} & Turn-Off Delay Time & & \\ \hline t_{f} & Turn-Off Fall Time & & \\ \hline Q_{g} & Total Gate Charge & & V_{DS} = 80 \text{ V}, \text{ I}_{D} = 7.3 \text{ A}, \\ \hline \end{tabular}$			60 10	75 13	pF pF
$\begin{tabular}{ c c c c c } \hline & V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \\ \hline & V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \\ \hline & f = 1.0 \text{ MHz} \end{tabular}$			60 10	75 13	pF pF
$\begin{tabular}{ c c c c c } \hline \hline C_{rss} & Reverse Transfer Capacitance & & & & & \\ \hline \hline C_{rss} & Reverse Transfer Capacitance & & & & \\ \hline \hline Switching Characteristics & & & & \\ \hline \hline t_{d(on)} & Turn-On Delay Time & & & & \\ \hline t_r & Turn-On Rise Time & & & & \\ \hline \hline t_{d(off)} & Turn-Off Delay Time & & & & \\ \hline \hline t_f & Turn-Off Fall Time & & & \\ \hline \hline Q_g & Total Gate Charge & & V_{DS} = 80 \ V, \ I_D = 7.3 \ A, & & \\ \hline \hline \end{array}$			10	13	pF
Switching Characteristics $t_{d(on)}$ Turn-On Delay Time t_r Turn-On Rise Time $t_{d(off)}$ Turn-Off Delay Time t_f Turn-Off Fall Time Q_g Total Gate Charge $V_{DS} = 80 V, I_D = 7.3 A, I_D = $			I	1	
$ \begin{array}{c c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			7	25	ns
			7	25	ns
			24	60	ns
Q_g Total Gate Charge $V_{DS} = 80 \text{ V}, I_D = 7.3 \text{ A},$			13	35	ns
B3 , D ,	(Note 4, 5)		19	50	ns
	$V_{DS} = 80$ V, $I_D = 7.3$ A, $V_{GS} = 10$ V (Note 4, 5)		5.8	7.5	nC
Q_{gs} Gate-Source Charge $V_{GS} = 10 V$			1.4		nC
Q _{gd} Gate-Drain Charge			2.5		nC
Drain-Source Diode Characteristics and Maximum Rating	S				
	Maximum Continuous Drain-Source Diode Forward Current			1.7	A
Maximum Pulsed Drain-Source Diode Forward Current				6.8	A
	(Noto 4)				
arr Reverse Recovery Charge arr 100 / 445	(14010 4)		150		ne
Off Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 1.7 \text{ A}$ t_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_S = 7.3 \text{ A},$ Q_{rr} Reverse Recovery Charge $dI_F / dt = 100 \text{ A}/\mu \text{s}$ Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 26mH, $I_{AS} = 1.7A, V_{DD} = 25V, R_G = 25 \Omega, Starting T_J = 25^{\circ}C$	(Note 4)		 70 150	1.5 	V ns nC

©2001 Fairchild Semiconductor Corporation FQT7N10 Rev. C0


www.fairchildsemi.com



©2001 Fairchild Semiconductor Corporation FQT7N10 Rev. C0

www.fairchildsemi.com

©2001 Fairchild Semiconductor Corporation FQT7N10 Rev. C0

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

R

PowerTrench[®]

2Cool™ AccuPower™ AX-CAP®, BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DFUXPEED Dual Cool™ EcoSPARK[®] EfficentMax™ **ESBC™**

F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST® FastvCore™ FETBench™

F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

FPS™

PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ тм ng our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET™

SYSTEM^{®*} GENERAL TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* μSerDes™ μ_{Set} UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XS™

Svnc-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: