

Is Now Part of

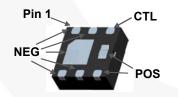
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

FR011L5J — Low-Side Reverse

Bias / Reverse Polarity Protector


FR011L5J (11mΩ, -30V) Low-Side Reverse Bias / Reverse Polarity Protector

Features

- Up to -30V Reverse-Bias Protection
- Nano Seconds of Reverse-Bias Blocking Response Time
- +29V 24-Hour "Withstand" Rating
- 11mΩ Typical Series Resistance at 5V
- MicroFET[™] 2x2mm Package Size
- RoHs Compliant
- USB Tested and Compatible

Applications

- USB 1.0, 2.0 and 3.0 Devices
- USB Charging
- Mobile Devices
- Mobile Medical
- POS Systems
- Toys
- Any DC Barrel Jack Powered Device
- Any DC Devices subject to Negative Hot Plug or Inductive Transients
- Automotive Peripherals

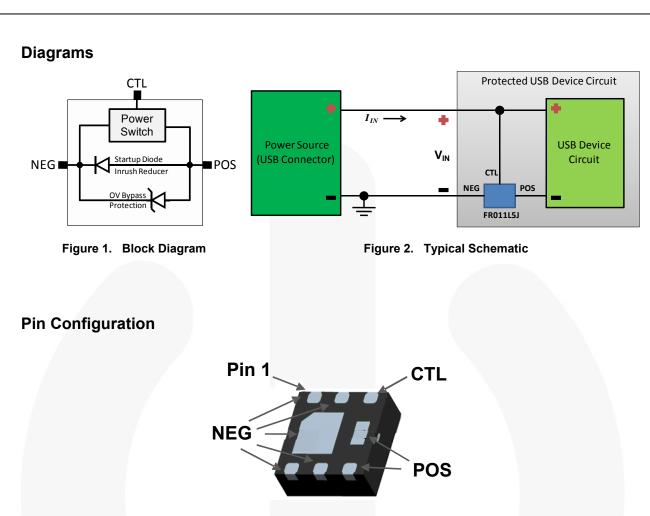
MicroFET2x2 mm

Description

Reverse bias is an increasingly common fault event that may be generated by user error, improperly installed batteries, automotive environments, erroneous connections to third-party chargers, negative "hot plug" transients, inductive transients, and readily available negatively biased rouge USB chargers.

Fairchild circuit protection is proud to offer a new type of reverse bias protection devices. The FR devices are low resistance, series switches that, in the event of a reverse bias condition, shut off power and block the negative voltage to help protect downstream circuits.

The FR devices are optimized for the application to offer best in class reverse bias protection and voltage capabilities while minimizing size, series voltage drop, and normal operating power consumption.


In the event of a reverse bias application, FR011L5J devices effectively provide a full voltage block and can easily protect -0.3V rated silicon.

From a power perspective, in normal bias, an $11m\Omega$ FR device in a 1.5A application will generate only 17mV of voltage drop or 25mW of power loss. In reverse bias, FR devices dissipate less then $20\mu W$ in a 16V reverse bias event. This type of performance is not possible with a diode solution.

Benefits extend beyond the device. Due to low power dissipation, not only is the device small, but heat sinking requirements and cost can be minimized as well.

Ordering Information				
Part Number	Top Mark	Package	Packing Method	
FR011L5J	11L	6-Lead, Molded Leadless Package (MLP), Dual, Non-JEDEC, 2mm Square, Single-Tied DAP	3000 on Tape & Reel; 7-inch Reel, 12mm Tape	

Pin Definitions

Name	Pin	Description
POS	4	The ground of the load circuit being protected. Current flows into this pin during normal operation.
CTL	3	The control pin of the device. A positive voltage to the NEG pin turns the switch on and a negative voltage turns the switch to a high-impedance state.
NEG	1, 2, 5, 6	The ground of the input power source. Current flows out of this pin during normal operation.

Absolute Maximum Ratings

Values are at T_A=25°C unless otherwise noted.

Symbol	Parameter			Value	Unit
V+ _{MAX_OP}	Steady-State Normal Operating Voltage between CTL and NEG Pins $(V_{IN} = V + _{MAX_OP}, I_{IN} = 1.5A, Switch On)$			+20	
V+ ₂₄	24-Hour Normal Operating Voltage Withstand Capability between CTL and NEG Pins (V_{IN} = V+ ₂₄ , I_{IN} = 1.5A, Switch On)			+29	V
V- MAX_OP	Steady-State Reverse Bias Standoff Voltage between CTL and NEG Pins $(V_{IN} = V_{-MAX_{OP}})$		-30		
I _{IN}	Input Current	$V_{IN} = 5V$, Continuous ⁽²⁾ (see Figure 4)		10	Α
TJ	Operating Junction Temperature			150	°C
Р	Power Dissipation	$T_A = 25^{\circ}C^{(2)}$ (see Figure 4)		2.4	W
PD		$T_A = 25^{\circ}C^{(2)}$ (see Figure 5)		0.9	V
IDIODE_CONT	Steady-State Diode Continuous Forward Current from POS to NEG			2	
IDIODE_PULSE	Pulsed Diode Forward Current from POS to NEG (300µs Pulse)			210	- A
	Human Body Model, JESD22-A114		0.6		
500	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101		2	kV
ESD		System Model, IEC61000-4-2 (CTL is shorted to POS) ⁽³⁾	Contact	8	
			Air	15	

Notes:

- 1. The V₊₂₄ rating is NOT a survival guarantee. It is a statistically calculated survivability reference point taken on qualification devices, where the predicted failure rate is less than 0.01% at the specified voltage for 24 hours. It is intended to indicate the device's ability to withstand transient events that exceed the recommended operating voltage rating. Specification is based on qualification devices tested using accelerated destructive testing at higher voltages, as well as production pulse testing at the V₊₂₄ level. Production device field life results may vary. Results are also subject to variation based on implementation, environmental considerations, and circuit dynamics. Systems should never be designed with the intent to normally operate at V₊₂₄ levels. *Contact Fairchild Semiconductor for additional information*.
- 2. The device power dissipation and thermal resistance (R_{θ}) are characterized with device mounted on the following FR4 printed circuit boards, as shown in Figure 4 and Figure 5
- 3. Conducted with shorted load. Open load performance is not guaranteed.

Figure 4. 1 Square Inch of 2-ounce copper

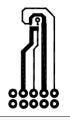
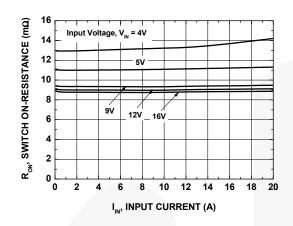


Figure 5. Minimum Pads of 2-ounce Copper

Thermal Characteristics

Symbol	Parameter	Value	Unit
R _{0JA}	Thermal Resistance, Junction to Ambient ⁽²⁾ (see Figure 4)	61	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient ⁽²⁾ (see Figure 5)	153	C/W


Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Positive Bia	as Characteristics					
R _{ON} De		V _{IN} = +4V, I _{IN} = 1.5A		13	20	
	Device Resistance, Switch On	V _{IN} = +5V, I _{IN} = 1.5A		11	15	
		$V_{IN} = +5V, I_{IN} = 1.5A,$ T _J = 125°C		15		mΩ
		V _{IN} = +12V, I _{IN} = 1.5A		9	13	
V _{ON}	Input Voltage, V_{IN} , at which Voltage at POS, V_{POS} , Reaches a Certain Level at Given Current	I _{IN} = 100mA, V _{POS} = 45mV, V _{NEG} = 0V	1.4	2.4	3.5	V
ΔV_{ON} / ΔT_{J}	Temperature Coefficient of V _{ON}			-3.9		mV/°C
IDIODE_CONT	Continuous Diode Forward Current	V _{CTL} = V _{POS}			2	А
V _F	Diode Forward Voltage	V _{CTL} = V _{POS} , I _{DIODE} = 0.1A, Pulse width < 300µs	0.56	0.60	0.73	V
I _{BIAS}	Bias Current Flowing out of NEG Pin during Normal Bias Operation	V _{CTL} = 5V, V _{NEG} = 0V, No Load		15		nA
Negative Bi	as Characteristics					
V- MAX_OP	Reverse Bias Breakdown Voltage				-30	V
ΔV- _{MAX_OP} / ΔT _J	Reverse Bias Breakdown Voltage Temperature Coefficient	I _{IN} = -250μA, V _{CTL} = V _{POS} = 0V		16		mV/°C
l-	Leakage Current from NEG to POS in Reverse-Bias Condition	V_{NEG} = 20V, V_{CTL} = V_{POS} = 0V		1		μA
t _{RN}	Time to Respond to Negative Bias Condition	V_{NEG} = 5V, V_{CTL} = 0V, C_{LOAD} = 10µF, Reverse Bias Startup Inrush Current = 0.2A			50	ns
Dynamic Cl	haracteristics					
Cı	Input Capacitance between CTL and NEG			1011		
Cs	Switch Capacitance between POS and NEG	V _{IN} = -5V, V _{CTL} = V _{POS} = 0V, f = 1MHz		81		pF
Co	Output Capacitance between CTL and POS			1456		
Rc	Control Internal Resistance			1.7		Ω

Typical Characteristics

 T_J = 25°C unless otherwise specified.

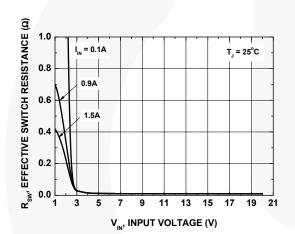


Figure 8. Effective Switch Resistance R_{SW} vs. Input Voltage V_{IN}

Figure 10. Switch On Resistance vs. Junction Temperature at 1.5A

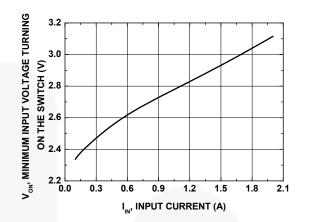


Figure 7. Minimum Input Voltage to Turn On Switch vs. Current at 45mV Switch Voltage Drop

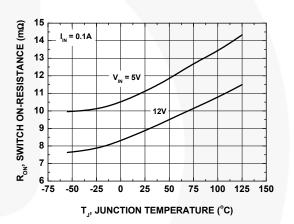
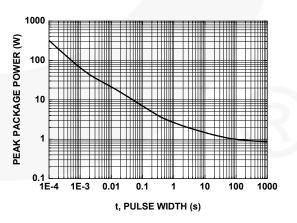



Figure 9. Switch On Resistance vs. Junction Temperature at 0.1A

Typical Characteristics

 T_J = 25°C unless otherwise specified.

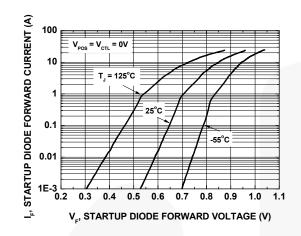
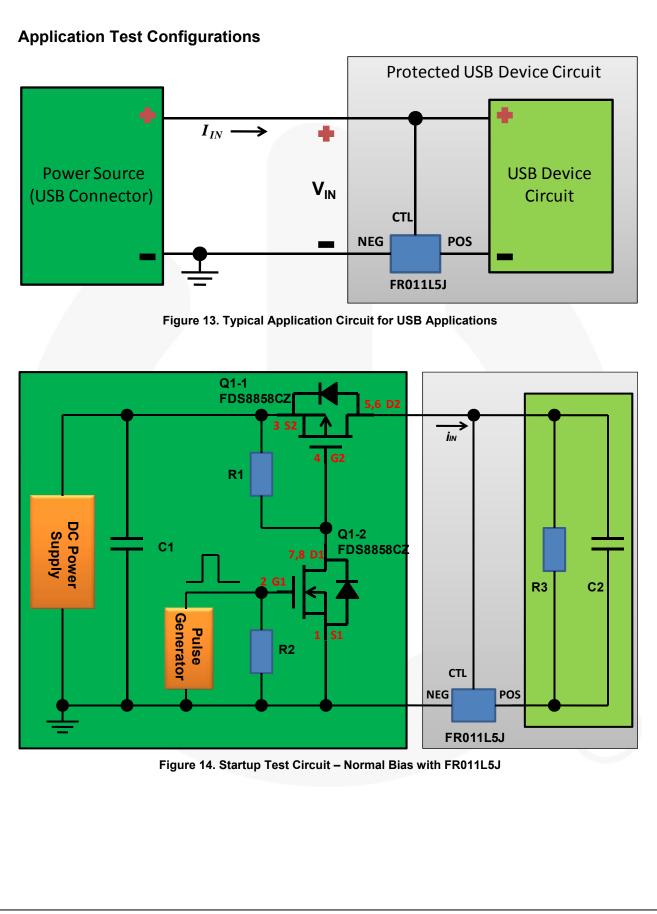
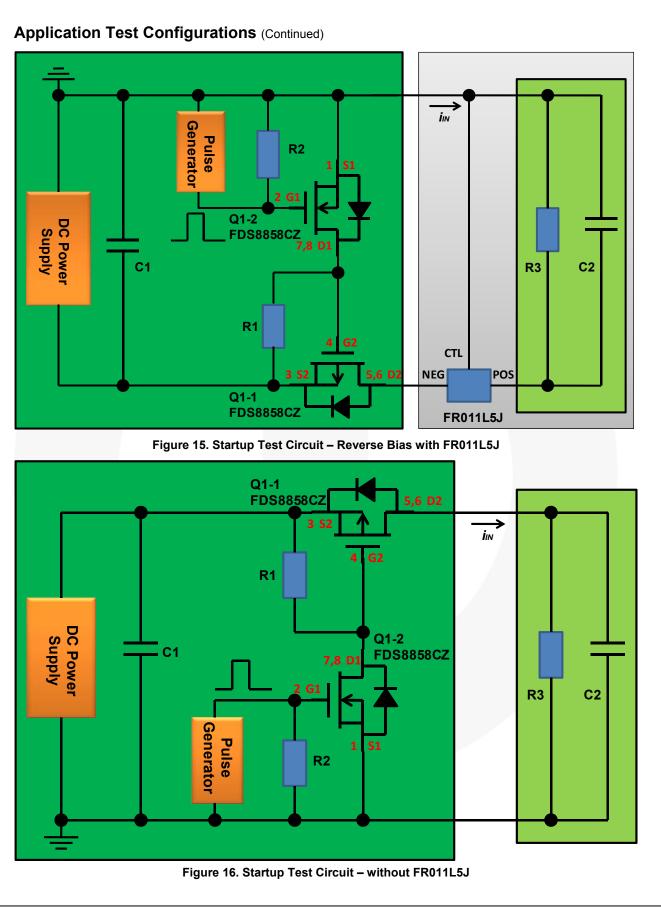
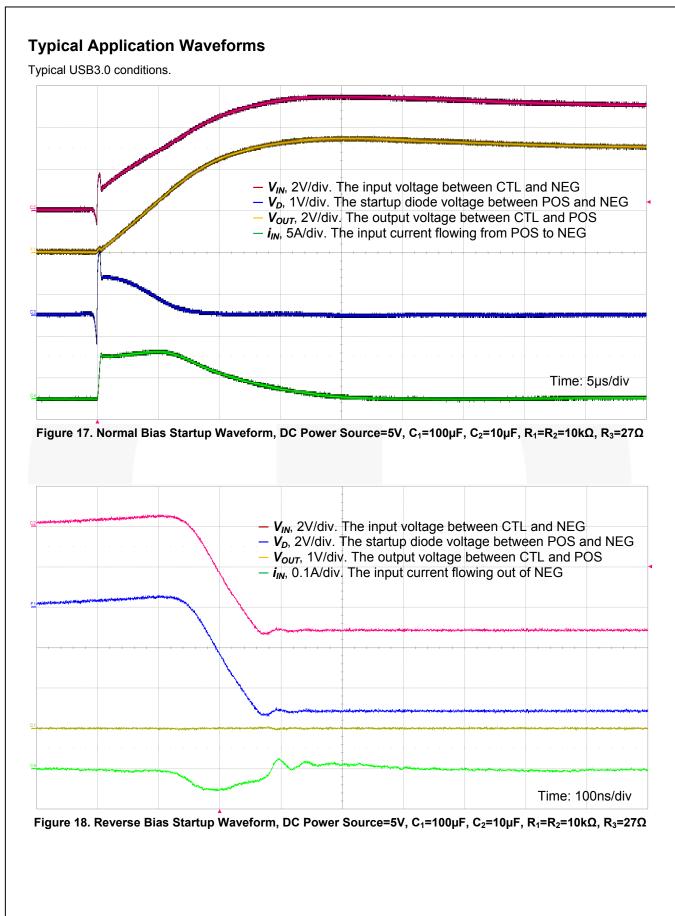





Figure 12. Startup Diode Current vs. Forward Voltage

Typical Application Waveforms (Continued) Typical USB3.0 conditions.

Application Information

Figure 17 shows the voltage and current waveforms when a virtual USB3.0 device is connected to a 5V source. A USB application allows a maximum source output capacitance of $C_1 = 120\mu$ F and a maximum device-side input capacitance of $C_2 = 10\mu$ F plus a maximum load (minimum resistance) of $R_3 = 27\Omega$. $C_1 =$ 100μ F, $C_2 = 10\mu$ F and $R_3 = 27\Omega$ were used for testing.

When the DC power source is connected to the circuit (refer to Figure 13), the built-in startup diode initially conducts the current such that the USB device powers up. Due to the initial diode voltage drop, the FR011L5J effectively reduces the peak inrush current of a hot plug event. Under these test conditions, the input inrush current reaches about 6.3A peak. While the current flows, the input voltage increases. The speed of this input voltage increase depends on the time constant formed by the load resistance R_3 and load capacitance C_2 . The larger the time constant, the slower the input voltage increase. As the input voltage approaches a level equal to the protector's turn-on voltage, V_{ON} , the protector turns on and operates in Low-Resistance Mode as defined by V_{IN} and operating current I_{IN} .

In the event of a negative transient, or when the DC power source is reversely connected to the circuit, the device blocks the flow of current and holds off the voltage, thereby protecting the USB device. Figure 18 shows the voltage and current waveforms when a virtual

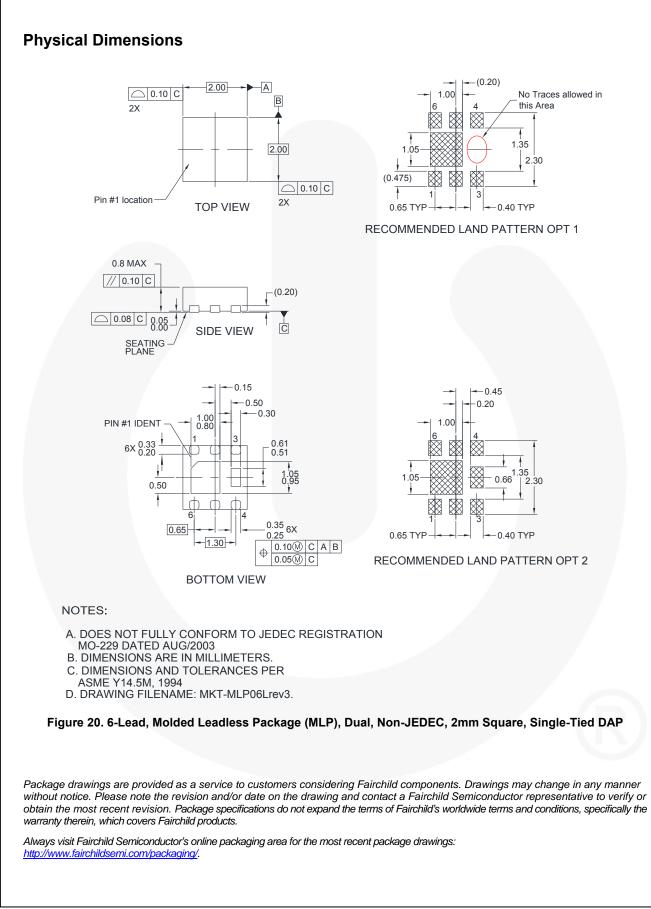

USB3.0 device is reversely biased; the output voltage is near 0 and response time is less than 50ns.

Figure 19 shows the voltage and current waveforms when no reverse bias protection is implemented. In Figure 17, while the reverse bias protector is present, the input voltage, V_{IN} , and the output voltage, V_O , are separated and look different. When this reverse bias protector is removed, V_{IN} and V_O merge, as shown inFigure 19 as V_{IN} . This V_{IN} is also the voltage applied to the load circuit. It can be seen that, with reverse bias protection, the voltage applied to the load and the current flowing into the load look very much the same as without reverse bias protection.

Benefits of Reverse Bias Protection

The most important benefit is to prevent accidently reverse-biased voltage from damaging the USB load. Another benefit is that the peak startup inrush current can be reduced. How fast the input voltage rises, the input/output capacitance, the input voltage, and how heavy the load is determine how much the inrush current can be reduced. In a 5V USB application, for example, the inrush current can be 5% - 20% less with different input voltage rising rate and other factors. This can offer a system designer the option of increasing C₂ while keeping "effective" USB device capacitance down.

FR011L5J — Low-Side Reverse Bias / Reverse Polarity Protector

FR011L5J — Low-Side Reverse Bias / Reverse Polarity Protector

FAIRCHILD SEMICONDUCTOR TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ PowerTrench[®] The Power Franchise® 2Cool™ FRFET® PowerXS™ AccuPower™ puwer Global Power ResourceSM AX-CAP™* Programmable Active Droop™ franchis GreenBridae™ QFĔT BitSiC™ TinyBoost™ QS™ Green FPS™ Build it Now™ TinyBuck™ Quiet Series™ Green FPS™ e-Series™ CorePLUS™ TinyCalc™ CorePOWER™ RapidConfigure™ Gmax™ TinyLogic® GTO™ CROSSVOLT™ ⊘™ **TINYOPTO™** IntelliMAX™ CTL™ Saving our world, 1mW/W/kW at a time™ TinyPower™ ISOPLANAR™ Current Transfer Logic™ TinyPWM™ SignalWise™ Making Small Speakers Sound Louder DEUXPEED® TinyWire™ SmartMax™ and Better Dual Cool™ SMART START™ TranSiC™ EcoSPARK[®] MegaBuck™ Solutions for Your Success™ TriFault Detect™ MICROCOUPLER™ EfficientMax™ TRUECURRENT®* SPM[®] ESBC™ MicroFET™ **STEALTH™** uSerDes™ F R MicroPak™ SuperFET[®] W MicroPak2™ SuperSOT™-3 Fairchild® Se Des MillerDrive™ SuperSOT™-6 UHC Fairchild Semiconductor® MotionMax™ SuperSOT™-8 Ultra FRFET™ FACT Quiet Series™ mWSaver™ SupreMOS® FACT UniFET™ OptoHiT™ FAST® SyncFET™ VCX™ **OPTOLOGIC[®]** Sync-Lock™ FastvCore™ VisualMax™ **OPTOPLANAR[®]** SYSTEM FETBench™ GENERAL®* VoltagePlus™ XS™ FlashWriter[®] **FPS™**

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

R011L5J -

Low-Side Reverse

Bias / Reverse Polarity Protector

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FR011L5J