

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

March 2013

FSA2271T Low-Voltage, Dual-SPDT (0.4 Ω) Analog Switch with Negative Swing Audio Capability

Features

- 0.4Ω Typical On Resistance for +3.0V Supply
- 0.25Ω Maximum R_{ON} Flatness for +3.0V Supply
- -3db Bandwidth: > 50MHz
- Low I_{CCT} Current Over Expanded Control Input Range
- Packaged in 10-Lead UMLP
- Power-off Protection on Common Ports
- Broad V_{CC} Operating Range: 1.65 to 4.3V
- Noise Immunity Termination Resistors
- ESD JEDEC: JESD22-A114 Human Body Model:
 - Power to GND: 16KVI/O to GND: 10kVAll other Pins: 7kV
- ESD JEDEC: JESD22-A101 Charged Device Model:
 - CDM: 2kV

Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSA2271T is a high-performance, dual - single pole double throw (SPDT) analog switch with negative swing audio capability. It features ultra-low R_{ON} of 0.4Ω (typical) at 3.0V $V_{CC}.$ The FSA2271T operates over a wide V_{CC} range of 1.65V to 4.3V and is fabricated with sub-micron CMOS technology to achieve fast switching speeds. Designed for break-before-make operation, the FSA2271T select input is TTL level compatible.

The FSA2271T features very low quiescent current, even when the control voltage is lower than the $V_{\rm CC}$ supply. This feature is optimized for the mobile handset applications, allowing direct interface with baseband processor general-purpose I/Os with minimal battery consumption.

The FSA2271T includes termination resistors that improve noise immunity during overshoot excursions, "pop-minimization," or off-isolation coupling.

IMPORTANT NOTE:

For additional information, please contact analogswitch@fairchildsemi.com.

Ordering Information

Part Number	Terminatio n Resistors	Operating Temperatur e Range	© Eco Status	Package
FSA2271TUMX	Yes	-40°C to 85°C	Green	10-Lead Quad Ultrathin Molded Leadless Package (UMLP), 1.4 x 1.8mm, 0.4mm pitch

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Analog Symbol

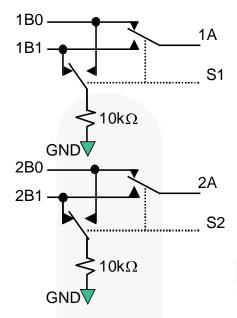


Figure 1. FSA2271T

Pin Configuration

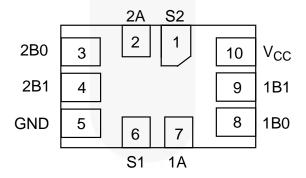


Figure 2. Pin Configuration

Pin Definitions

Pin#	Name	Description			
1, 6	S2, S1	Switch Select Pins			
2, 7	2A, 1A	Data Points			
3, 8	2B0, 1B0	Data Points			
4, 9	2B1, 1B1	Data Ports			
5 GND		Ground			
10 V _{CC}		Supply Voltage Data Ports			

Truth Table

Control Input,Sn	Function
LOW Logic Level	nB0 connected to nA; nB1 terminated to GND
HIGH Logic Level	nB1 connected to nA; nB0 terminated to GND

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{CC}	Supply Voltage		-0.5	5.5	V
V _{SW}	Switch Voltage ⁽¹⁾	1B0, 1B1, 2B0, 2B1, 1A, 2A Pins	V _{CC} - 4.3V	$V_{CC} + 0.3V$	V
V _{CNTRL}	Control Input Voltage ⁽¹⁾	S1, S2	-0.5	$V_{CC} + 0.3V$	V
I _{IK}	Input Clamp Diode Current			-50	mA
I _{SW}	Switch I/O Current	Continuous		350	mA
I _{SWPEAK}	Peak Switch Current	Pulsed at 1ms Duration, <10% Duty Cycle		500	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature			+150	°C
TL	Lead Temperature	Soldering 10 seconds		+260	°C
		I/O to GND	10		
505	Human Body Model, JEDEC: JESD22-A114	All Other Pins	7	λ.	
ESD	01525. 015522 ATT4	Power to GND	16	_	kV
	Charged Device Model, JEDEC-JE	SD-C101	2		

Note:

 The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	1.65	4.30	V
V _{S1,S2}	Control Input Voltage	0	V_{CC}	V
V_{SW}	Switch I/O Voltage	$V_{CC} - 4.3$	V_{CC}	V
T _A	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

All typical values are for V_{CC}=3.3V at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =+25°C			T _A =-40 to +85°C		Units	
				Min.	Тур.	Max.	Min.	Max.		
			3.60 to 4.30				1.7			
\/	land to Valta and Link		2.70 to 3.60				1.5			
V_{IH}	Input Voltage High		2.30 to 2.70				1.4		V	
			1.65 to 1.95				0.9			
			3.60 to 4.30					0.7	V	
\/	Input Voltage Levy		2.70 to 3.60					0.5		
V_{IL}	Input Voltage Low		2.30 to 2.70					0.4	V	
			1.65 to 1.95					0.4		
I _{IN}	Control Input Leakage (S1,S2)	V _{IN} =0 to V _{CC}	1.65 to 4.30	. 1			-0.5	0.5	μA	
I _{A(ON)}	On Leakage Current of Port nA	nA=0.3V, $V_{\rm CC}$ – 0.3V; nB0 or nB1 (on)=nA or Floating; nB0 or nB1 (off)=0V or floating Figure 5	1.95 to 4.30				-1	1	μΑ	
l _{OFF}	Power Off Leakage Current (Common Port Only 1A, 2A)	Common Port (1A, 2A); V _{IN} =0V to 4.3V, V _{CC} =0V; nB0, nB1=0V or Floating	0					±45	μA	
		I _{ON} =100mA, nB0 or nB1=0V, 0.7V, 3.6V, 4.3V Figure 3	4.30		0.3					
D	2 11 1 2 2 1 1 (2)	I _{ON} =100mA, nB0 or nB1=0V, 0.7V, 2.3V, 3.0V Figure 3	3.00		0.4			0.8	Ω	
R _{ON}	Switch On Resistance ⁽²⁾	I _{ON} =100mA, nB0 or nB1=0V, 0.7V, 1.6V, 2.3V Figure 3	2.30		0.52					
		I _{ON} =100mA, nB0 or nB1=0V, 0.7V, 1.65V Figure 3	1.65		1.00					
			4.30		0.04			0.13		
4 D	On Resistance Matching	1 100m A nD0 or nD1 0.7\/	3.00		0.06			0.13		
ΔR_{ON}	Between Channels ⁽³⁾	I _{ON} =100mA, nB0 or nB1=0.7V	2.30		0.12				Ω	
			1.65		1.00					
			4.30					0.25		
	O Decistores Flats (4)	I _{OUT} =100mA, nB0 or nB1=0V	3.00	- //				0.25		
R _{FLAT(ON)}	On Resistance Flatness ⁽⁴⁾	to V _{CC}	2.30		0.5				Ω	
			1.65		0.6					
R _{TERM}	Internal Termination Resistors ⁽⁵⁾				10				kΩ	
I _{cc}	Quiescent Supply Current	V _{IN} =0 or V _{CC} , I _{OUT} =0	4.30	-100		100	-500	500	nA	
1	Increase in Language	Input at 2.6V	4.00		3.0			10.0	^	
I _{CCT}	Increase in I _{CC} per Input	Input at 1.8V	4.30		7.0			15.0	μA	

Notes:

- On resistance is determined by the voltage drop between the A and B pins at the indicated current through the switch.
- 3.
- Δ R_{ON}=R_{ON max} R_{ON min} measured at identical V_{CC}, temperature, and voltage. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
- Guaranteed by characterization, not production tested.

AC Electrical Characteristics

All typical value are for V_{CC} =3.3V at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc}	T _A =+25°C			T _A =-40°C to +85°C		Units	
			(V)	Min.	Тур.	Max.	Min.	Max.		
			3.60 to 4.30			60	15	65		
	Turn-On Time	nB0 or nB1=1.5V; R_L =50Ω, C_L =35pF	2.70 to 3.60			65	15	70		
t _{ON}	Turn-On Time	Figure 4, Figure 10	2.30 to 2.70			80	15	85	ns	
			1.65 to 1.95		100					
			3.60 to 4.30			55	5	60		
	Turn-Off Time	nB0 or nB1=1.5V; R _L =50Ω,	2.70 to 3.60			60	5	65	ns	
t _{OFF}	Turn-Oil Time	C _L =35pF Figure 4, Figure 10	2.30 to 2.70			65	5	70		
			1.65 to 1.95		65					
	//		3.60 to 4.30		3		1		ns	
	Break-Before-Make Time	nB0 or nB1=1.5V; R_L =50 Ω , C_L =35pF Figure 11	2.70 to 3.60		5		2			
t _{BBM}	break-belore-wake rime		2.30 to 2.70		10		2			
			1.65 to 1.95		15		2			
Q	Charge Injection	C_L =1.0nF, V_S =0 $V_; R_S$ =0 Ω Figure 14	1.65 to 4.30		25				pC	
OIRR	Off Isolation	f=100kHz, R_L =50 Ω , C_L =0pF Figure 12	1.65 to 4.30		-70				dB	
Xtalk	Crosstalk	f=100kHz, R _L =50Ω; C _L =0pF Figure 13	1.65 to 4.30		-70	1			dB	
BW	-3db Bandwidth	R_L =50 Ω ; C_L =0pF Figure 9	1.65 to 4.30		>50				MHz	
THD	Total Harmonic Distortion	R_L =32 Ω , V_{SW} =2 V_{PP} , f=20Hz to 20kHz, V_{BIAS} =0 V Figure 15	1.65 to 4.30		.06				%	

Capacitance

Symbol	Dorometer	Conditions	V _{cc}	T _A =+25°C			T _A =-40°C		
Symbol	Parameter		(V)	Min.	Тур.	Max.	Min.	Max.	Units
C _{IN}	Control Pin Input Capacitance	f=1MHz Figure 7	0		2.5			1	pF
C _{OFF}	B port Off Capacitance	f=1MHz Figure 7	3.3		30				pF
C _{ON}	A port On Capacitance	f=1MHz Figure 8	3.3		120				pF

Test Diagrams

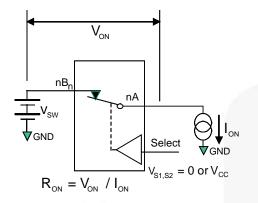


Figure 3. On Resistance

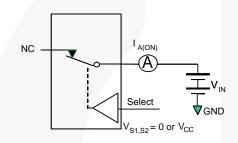


Figure 5. On Leakage

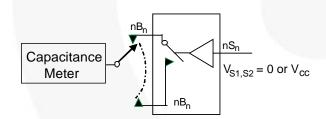


Figure 7. Off Capacitance

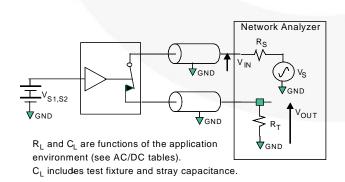


Figure 9. Bandwidth

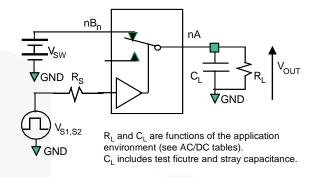
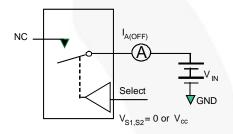



Figure 4. Test Circuit Load

Each switch port is tested separately.

Figure 6. Off Leakage (Each Port Tested Separately)

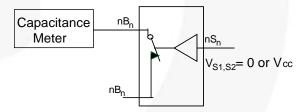


Figure 8. On Capacitance

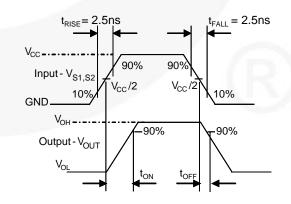


Figure 10. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

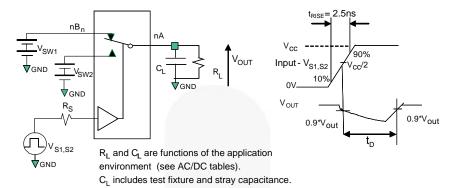


Figure 11. Break-Before-Make Timing

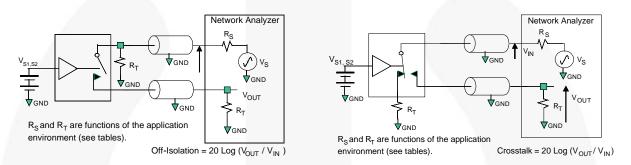


Figure 12. Channel Off Isolation

Figure 13. Adjacent Channel Crosstalk

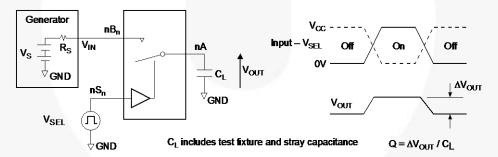
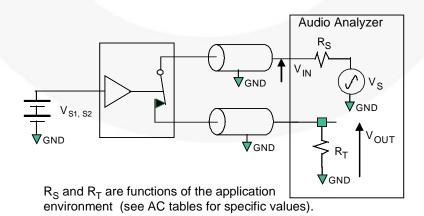
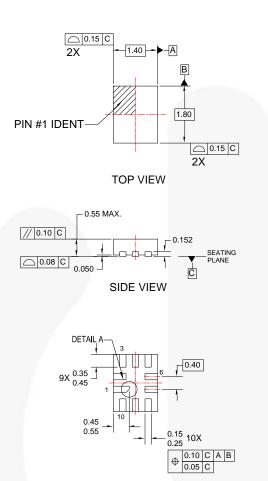
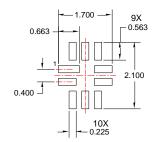
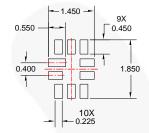
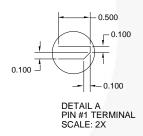


Figure 14. Charge Injection Test


Figure 15. Total Harmonic Distortion

Physical Dimensions



RECOMMENDED LAND PATTERN

OPTIONAL MINIMIAL TOE LAND PATTERN

NOTES:

- A. DIMENSIONS ARE IN MILLIMETERS.
- B. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- C. DRAWING FILENAME: UMLP10Arev2

Figure 16. 10-Lead, Quad Ultrathin Molded Leadless Package (UMLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

BOTTOM VIEW

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOL™

CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
EZSWIT CH™*

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FAST®
FastvCore™

FlashWriter®*
FPSTM
F-PFSTM
FRFET®
Global Power ResourceSM

Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™

MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
MotionSPM™
OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

ISOPLANAR™

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™ QFET®

QS™ Quiet Series™

RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™

SMART START'
SPM®
STEALTH™
SuperSOT™.3
SuperSOT™.6
SuperSOT™.8
SupreMOS™
SyncFET™
Sync-Lock™

franchisa
TinyBoost™
TinyBuck™
TinyCalc™
TinyCogic®
TiNYOPTO™
TinyPower™
TinyPower™
TinyPWM™
TinyWre™
TriFault Detect™
TRUECURRENT™

µSerDes™

SerDes
UHC®
UItra FRFET™
UniFET™
VCX™
VisualMax™
XS™

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

ennition of Terms							
Datasheet Identification	Product Status	Definition					
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.					
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.					
No Identification Needed	Full Production	Datasheet contains final specifications, Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.					
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.					

Rev. 146

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FSA2271TUMX