

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

June 2016

FSA2276 — DPDT (0.5 Ω) HiFi Audio Switch w/ Negative Swing

Features

- V_{DD} Operating Range: 1.65 to 5.5 V
- External Capacitor Connection for Pop and Click Noise Suppression
- Power-Off Protection on Common Ports
- R_{ON} = 0.5 Ω (Typ.) at 1.8 V
- THD+N = -115 dB; 2 V_{RMS}, 20 kΩ Load; f = 1 kHz
- X_{TALK} = -122 dB at 1 V_{RMS}, 50 Ω Load; f = 1 kHz
- Off Isolation = -115 dB at 1 V_{RMS}, 50 Ω Load; f = 1 kHz
- 12-Lead UMLP 1.8 mm x 1.8 mm

Applications

- Mobile Phone, Tablet, Notebook PC, Media Player
- Docking Station, TV, Set-Top Box, LCD Monitor

Description

The FSA2276 is a high-performance, Double-Pole Double-Throw (DPDT) analog switch with negative swing audio capability. The FSA2276 features ultra-low audio R_{ON} of $0.5\,\Omega$ (typical) at $1.8\,V\,V_{DD}$. The FSA2276 operates over a V_{DD} range of $1.65\,V$ to $5.5\,V$, is fabricated with sub-micron CMOS technology to achieve fast switching speeds, and is designed for break-before-make operation. To minimize pop and click during operation, the turn on ramp time is selectable using an external capacitor (C_EXT).

The FSA2276 features THD+N specifications that target a Hi-Fidelity audio quality into both 32 Ω headphones and line out type loads (>600 Ω).

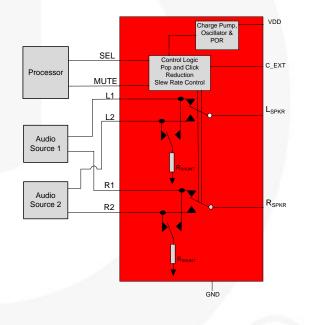


Figure 1. Application Block Diagram

Ordering Information					
Part Number	Top Mark	Package Description			
FSA2276UMX	EN	12-Lead, UMLP, Quad, JEDEC MO252, 1.8 mm x 1.8 mm			

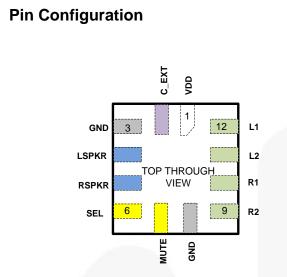


Figure 2. Pin Assignment (Top Through View)

Pin Descriptions

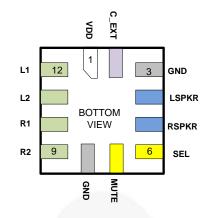


Figure 3. Pin Assignment (Bottom View)

Pin	Name	Description	
1	VDD	Power Supply (1.65 to 5.5 V)	
2	C_EXT	Slow Turn On External Capacitor	
3	GND	Ground	
4	L _{SPKR}	Audio L _{SPPKR} Common I/O Port	
5	R _{SPKR}	Audio R _{SPPKR} Common I/O Port	
6	SEL	Select Pin	
7	MUTE	Mute Enable - Active High	
8	GND	Ground	
9	R2	Audio – Right Channel Source2 I/O Port	
10	R1	Audio – Right Channel Source1 I/O Port	
11	L2	Audio – Left Channel Source2 I/O Port	
12	L1	Audio – Left Channel Source1 I/O Port	

Truth Table

Mute	SEL	Function	Resistor Terminations
0	0	$L1 = L_{SPKR}; R1 = R_{SPKR}$	R _{SHUNT(s)} connect to L2/R2
0	1	$L2 = L_{SPKR}; R2 = R_{SPKR}$	R _{SHUNT(s)} connect to L1/R1
1	0	L1 ≠ L _{SPKR} ; L2 ≠ L _{SPKR} ; R1 ≠ R _{SPKR} ; R2 ≠ R _{SPKR} (All Paths Hi-Z)	R _{SHUNT(s)} OPEN
1	1	L1 ≠ L _{SPKR} ; L2 ≠ L _{SPKR} ; R1 ≠ R _{SPKR} ; R2 ≠ R _{SPKR} (All Paths Hi-Z)	R _{SHUNT(s)} OPEN

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramete	r	Min.	Max.	Unit
V_{DD}	Supply/Control Voltage		-0.3	6.0	V
V _{CNTRL}	Control Input Voltage	SEL, MUTE	-0.3	6.0	V
V_{SW}	DC Switch I/O Voltage	L1, L2, R1, R2, L _{SPKR} , R _{SPKR}	-3.5	3.5	V
l _{IK}	ESD Input Diode Current			-50	mA
I _{SW}	Switch I/O Current			700	mA
	Human Body Model, ANSI/ESDA/ JEDEC JS-001-2012	All Pins	5		
ESD	Charged Device Model, JEDEC: JESD22-C1	101	2		kV
		Contact	8		
	IEC 61000-4-2 System	Air Gap	15		
T _A	Absolute Maximum Operating Temperature		-40	+85	°C
T _{STG}	Storage Temperature		-65	+150	°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter			Тур.	Max.	Unit
V _{DD}	Supply Voltage		1.65	1.80	5.50	V
V _{SW}	DC Switch I/O Voltage L1, L2, R1, R2, L _{SPKR} , R _{SPKR}		-3.0		3.0	V
V _{CNTRL}	Control Input Voltage SEL, MUTE		0		V _{DD}	V
I _{SW}	DC Switch I/O Current			100		mA
T _A	Ambient Operating Temperature		-40	25	+85	°C

FSA2276 — DPDT (0.5 Ω) HiFi Audio Switch w/ Negative Swing

DC Characterist	ics
-----------------	-----

 V_{DD} = 1.65 V to 5.5 V, V_{DD} (Typ.) = 1.8 V, T_A = -40°C to 85°C, and T_A (Typ.) = 25°C, unless otherwise specified.⁽¹⁾

Symbol	Parameter	Condition	V _{DD} (V)	T _A =-40°C to +85°C			Unit
				Min.	Тур.	Max.	
VIH	VCNTRL Pin Input High Voltage (SEL, MUTE)	C_EXT = FLOAT		1.17		VDD	V
VIL	VCNTRL Pin Input Low Voltage (SEL, MUTE)	C_EXT = FLOAT C_EXT = FLOAT		0		0.5	V
I _{ON}	Switch-to-Gnd ON Leakage Current	L1, R1, L2, R2 = -3 V to 3 V, L_{SPKR} , R _{SPKR} = Float (I _{SW} = 0 mA) MUTE=LOW, SEL=0 or VDD C_EXT = FLOAT, Figure 6	1.65 to 5.5	-1.0	0.1	1.0	μA
I _{NO_MUTE}	Switch-to-Gnd OFF Leakage Current (when Muted)	L1, R1, L2, R2 = -3 V to 3 V, L_{SPKR} , R _{SPKR} = Float (I _{SW} = 0 mA) MUTE = HIGH, SEL = 0 or VDD C_EXT = FLOAT, Figure 5	1.65 to 5.5	-1.0	0.1	1.0	μA
I _{OFF}	Input Leakage Current ⁽²⁾	L1, R1, L2, R2 = -3 V to 3 V, L_{SPKR} , R _{SPKR} = Float (I _{SW} = 0 mA) MUTE = LOW, SEL = 0 or VDD, C_EXT = FLOAT	0	-1.0	0.1	1.0	μA
I _{IN}	Control Input Leakage Current ⁽³⁾ (SEL, MUTE)	L1, R1, L2, R2 = -3 V to 3 V, L _{SPKR} , R _{SPKR} = Float (I _{SW} = 0 mA), C_EXT = FLOAT	1.65 to 5.5	-0.5	0.1	0.5	μA
I _{DD}	VDD Supply Current	MUTE = LOW, SEL = 0 or VDD, C_EXT = FLOAT	5.5		16	30	μA
I _{DDZ}	VDD Hi-Z Supply Current	MUTE = HIGH, SEL = 0 or VDD, C_EXT = FLOAT	5.5			1	μA
I _{DDT}	Increase in IDD per Control Voltage	MUTE = LOW, SEL = 0 or 1.8 V SEL = LOW, MUTE = 0 or 1.8 V C_EXT = FLOAT	5.5			1	μA
Ron	Switch On Resistance	ISW = 100 mA, V _{SW} = -3 V to 3 V C_EXT = FLOAT, Figure 4	1.65 to 5.5		0.5	1.0	Ω
ΔR _{ON}	On Resistance Matching, Channel to Channel	ISW = 100 mA, V _{SW} = -3 V to 3 V C_EXT = FLOAT	1.65 to 5.5		30		mΩ
R _{FLAT}	On Resistance Flatness	ISW = 100 mA, V_{SW} = -3 V to 3 V C_EXT = FLOAT	1.65 to 5.5		1		mΩ
R _{SHUNT}	Click and Pop Resistance (L1, L2, R1, R2, L _{SPKR} , R _{SPKR})	VLX_RX = 3.0 V, MUTE = 0, SEL = 0 or VDD, C_EXT = FLOAT		6	10	14	kΩ

Notes:

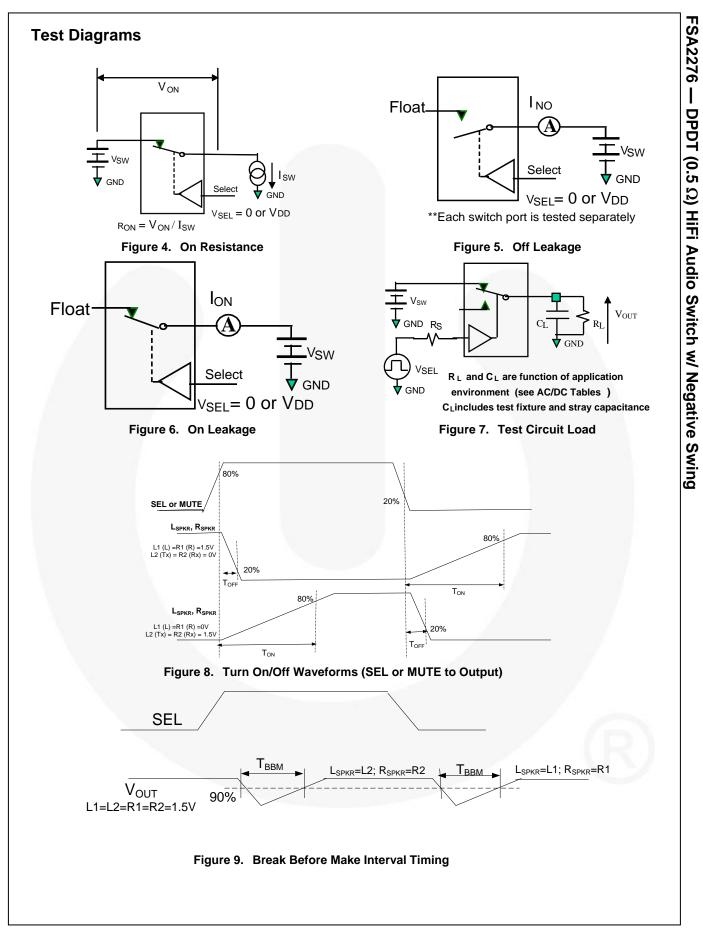
1. Limits over the recommended temperature operating range ($T_A = -40^{\circ}C$ to $+85^{\circ}C$) are correlated by statistical quality.

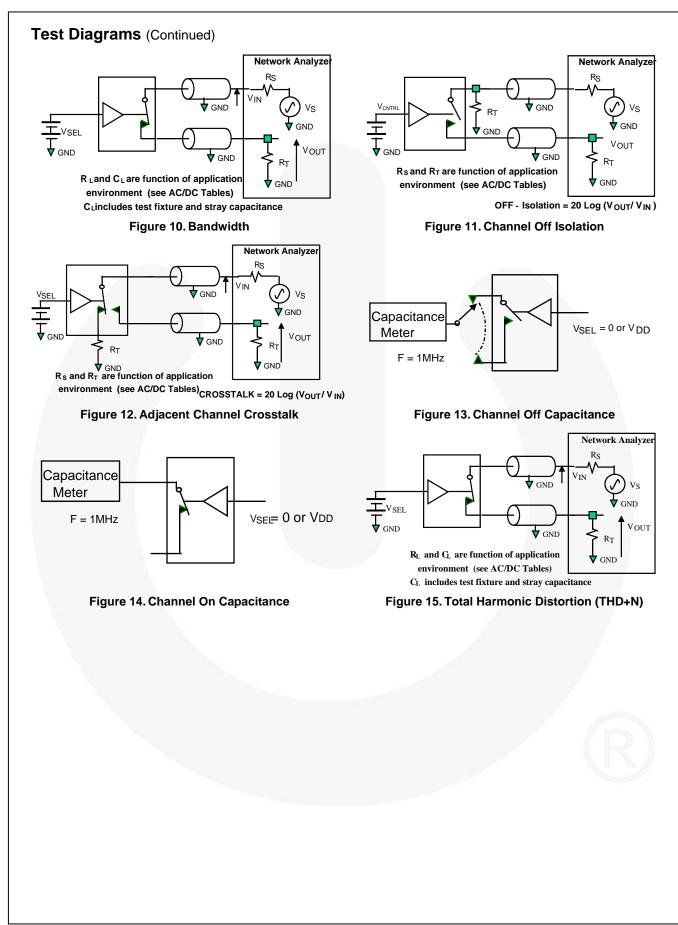
2. Only valid for $V_{SW} > 0 V$.

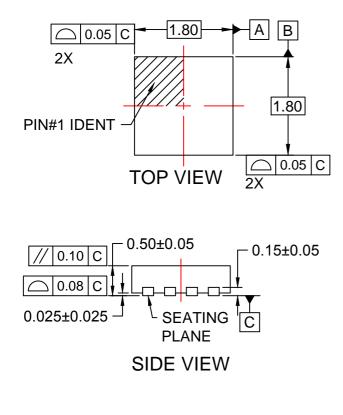
3. $V_{MUTE} \le V_{DD} + 0.3$ otherwise additional input leakage current may flow.

0	Demonster	O an diti an		V _{DD} (V)	T _A =- 40°C to +85°C			11
Symbol	Parameter	Condition	Condition		Min.	Тур.	Max.	Unit
	Enable Time	L1 = R1 = L2 = R2 = 1.5 V,	C_EXT = Float	1.8, 3.3		0.5		
t _{MUTE_ON}	(MUTE to	L_{SPKR} , R_{SPKR} = 50 Ω to GND SEL= 0 or V_{DD} ; See Figure 7	C_EXT = 0.1 µF	1.8		60		ms
	Output)	and Figure 8	C_EXT = 0.1 µF	3.3		100		
ton mute	Disable Time (MUTE to	L1 = R1= L2 = R2 = 1.5 V, L _{SPKR} , R _{SPKR} = 50 Ω to GND,	C_EXT = Float	1.8, 3.3		35		μs
	Output)	SEL = 0 or V_{DD} ; See Figure 7 and Figure 8	C_EXT = 0.1 µF	-,		35		
		L1 (L2) = R1 (R2) = 1.5 V, L2 (L1) = R2 (R1) = 0 V	C_EXT = Float	1.8, 3.3		0.5		
t _{ON_SEL}	Turn On Time (SEL to Output)	L_{SPKR} , R_{SPKR} = 50 Ω to GND,	C_EXT = 0.1 µF	1.8		50		ms
		SEL = 0 or V_{DD} ; MUTE = 0 See Figure 7 and Figure 8	C_EXT = 0.1 µF	3.3		100		
t _{OFF_SEL}	Turn On Time	L1 (L2) = R1 (R2) = 1.5 V, L2 (L1) = R2 (R1) = 0 V L _{SPKR} , R _{SPKR} = 50 Ω to GND,		1.8, 3.3		20		μs
-OFT_OEE	^{COFF_SEL} (SEL to Output)	SEL= 0 or V_{DD} ; MUTE = 0 See Figure 7 and Figure 8	C_EXT = 0.1 µF			20		F
t _{BBM}	Break Before Make Time (SEL to Output)	L1 (L2) = R1 (R2) = 1.5 V, L_{SPKR} , $R_{SPKR} = 50 \Omega$ to GND,SEL = 0 or V_{DD} ; C_EXT = FLOAT, MUTE = 0 V; See Figure 7 and Figure 9		1.8, 3.3		500		μs
O _{IRR}	Off Isolation ⁽⁴⁾	$ f = 1 \text{ kHz}, \text{R}_{\text{L}} = 50 \Omega, \text{C}_{\text{L}} = 0 \text{p} \\ \text{MUTE} = 0 \text{V}_{\text{SW}} = 1 \text{V}_{\text{RMS}} \text{Figure} $		1.8, 3.3		-115		dB
OIKK		$ f = 1 \text{ MHz}, \text{R}_{\text{L}} = 50 \Omega, \text{C}_{\text{L}} = 0 \text{p} \\ \text{MUTE} = 0 \text{V}_{\text{SW}} = 1 \text{V}_{\text{RMS}} \text{ Figure} $		1.0, 0.0		-92		
OIRRM	Off Isolation-	$f = 1 \text{ kHz}, \text{R}_{\text{L}} = 50 \Omega, \text{C}_{\text{L}} = 0 \text{ pF},$ MUTE = V _{DD} ; V _{SW} = 1 V _{RMS} Figure		1.8, 3.3		-113		dB
	Muted ⁽⁴⁾	f = 1 MHz, R_L = 50 Ω, C_L = 0 pF, MUTE = V _{DD} ; V _{SW} = 1 V _{RMS} Figure 11		1.0, 0.0		-95		
X _{talk}	Cross Talk (Adjacent) ⁽⁴⁾	$ f = 1 \text{ kHz}, \text{R}_{\text{L}} = 50 \Omega, \text{V}_{\text{SW}} = 1 $	V _{RMS}	1.8, 3.3	1.	-122		dB
BW	-3 dB Bandwidth ⁽⁴⁾	$R_L = 50 \Omega$ Figure 10		1.8, 3.3		380		MHz
DODD	Power Supply	$V_{PSRR} = V_{DD} + 100 \text{ mV}_{RMS}$ R _L = 20 kΩ or 32 Ω (at L _{SPKR} ,	R _L = 32 Ω			-119		
PSRR Rejection Ratio ⁽⁴⁾	R_{SPKR} , MUTE = 0 or V _{DD} , f = 1 kHz, V _{SW} = GND or Floa	D 20 KO	1.8, 3.3		-105		dB	
		$R_L = 20 \text{ k}\Omega$, f = 1 kHz,	·			0.00018		%
		$V_{SW} = 2 V_{RMS}$, With A-weighted, Figure 15				-115		dB
THD+N	Total Harmonic Distortion +	R_L =600 Ω , f = 1 kHz, V_{SW} = 2	V _{RMS}			0.00018		%
	Noise ⁽⁴⁾	With A-weighted, Figure 15				-115		dB
		$R_L = 32 \ \Omega, \ f = 1 \ kHz, \ V_{SW} = 1 \ V_{RMS} \ , \label{eq:RL}$				0.00018		%
		With A-weighted, Figure 15			-115		dB	

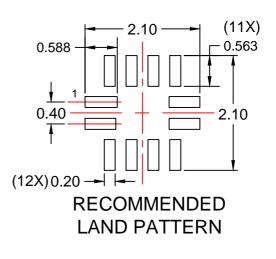
AC Characteristics

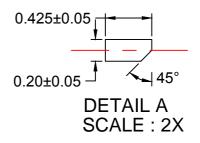

Note:

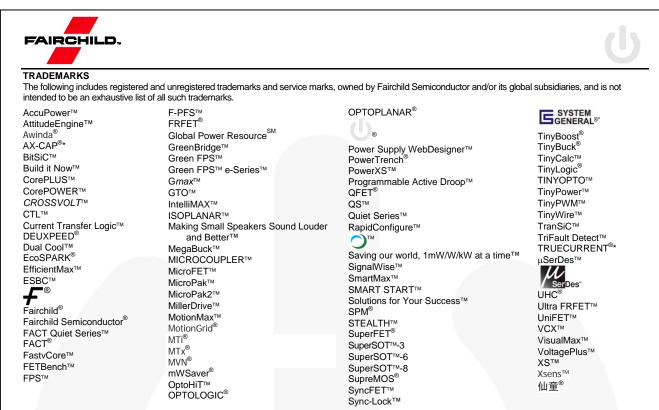

4. Guaranteed by characterization. Not production tested.


Т
FSA2276 -
R
N
6
Р
9
6
Ċ
5
N
Т
⋗
Ξ
Q
ō
cn
Š
È
ö
Ъ
٤
Z
С.
a
Ē
2
6 — DPDT (0.5 Ω) HiFi Audio Switch w/ Negative Swing
S
≥
Σ
Q

O mark al	Demonster	O an dition		T _A =- 4	40°C to	+85°C	
Symbol	Parameter	Condition	V _{DD} (V)	Min.	Тур.	Max.	Unit
C _{ON}	On Capacitance (Common Port) ⁽⁶⁾	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias MUTE = 0 V Figure 14	1.8, 3.3		22		pF
C _{OFF1}	Off Capacitance (Common Port) ⁽⁶⁾	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias MUTE = V _{DD} Figure 13	1.8, 3.3		25		pF
C _{OFF2}	Off Capacitance (Non-Common Ports) ⁽⁶⁾	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias MUTE = 0 V Figure 13	1.8, 3.3		14		pF
Coff_mute	Off Capacitance - MUTED (Non-Common Ports) ⁽⁶⁾	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias, MUTE = V _{DD}	1.8, 3.3		14		pF
C _{CNTRL}	Control Input Pin Capacitance (MUTE, SEL) ⁽⁶⁾	f = 1 MHz, 100 mV _{PP} , 100 mV DC bias MUTE	- 0		3 6		pF


Limits over the recommended temperature operating range (T_A=-40°C to +85°C) are correlated by statistical quality control methods.
Guaranteed by characterization. Not production tested.





NOTES:

- A. PACKAGE DOES NOT CONFORM TO ANY JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- E. DRAWING FILENAME: MKT-UMLP12Arev5.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FSA2276UMX