

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

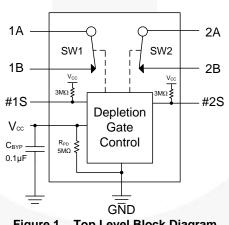
November 2014

FSA551 Dual SPST Depletion Mode Audio Switch

Features

- Dual SPST
- Depletion Mode Technology
- . -3 dB Bandwidth: 240 MHz
- V_{CC-OFF} : 1.5 V to 3.0 V
- V_{CC-ON}: 0 V to 0.2 V
- . V_{SW-OFF}: -0.3 V to 3 V
- V_{SW-ON}: -0.3 V to 3 V
- R_{ON}: 0.38 Ω Typical
- Ron Flat: 0.01 Ω (Typical)
- THD+N: 0.0005% (Typical)
- Fairchild Green, RoHS Compliant, Halogen Free

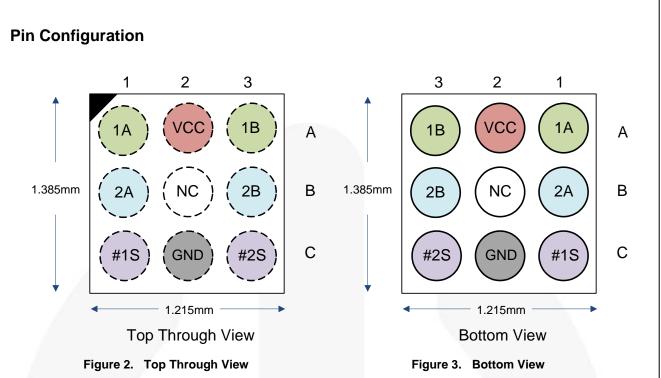
Description


The FSA551 is a high-performance dual single-pole single-throw (SPST x 2) audio switch. The Depletion Mode technology allows the device to conduct signals when there is no V_{CC} available and to isolate signals when V_{cc} is present. During signal conduction, the Depletion Mode gate control allows the FSA551 to achieve excellent THD+N performance while consuming minimal power.

Related Resources

FSA551 Evaluation Board

Applications


- Smart Phones
- Tablets, Ultra Books

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA551UCX	-40 to 85°C	U9	9-Ball WLCSP, 0.40 mm Pitch, 1.215 x 1.385 x 0.58 mm (Nominal)	3000 Units on Tape & Reel

Pin Descriptions

Pin #	Name	Туре	Description
A1	1A	Depletion I/O	A-Port of Switch 1 (Normally Closed)
A3	1B	Depletion I/O	B-Port of Switch 1 (Normally Closed)
C1	#1S	Control	Select to Enable/Disable SW1 (Enable LOW)
A2	V _{CC}	Power Supply	Power Supply Input
B2	NC	No Connect	Do Not Connect
C2	GND	Ground	Ground
B1	2A	Depletion I/O	A-Port of Switch 2 (Normally Closed)
B3	2B	Depletion I/O	B-Port of Switch 2 (Normally Closed)
C3	#2S	Control	Select to Enable/Disable SW2 (Enable LOW)

Table 1. Depletion Mode Control Truth Table

V _{cc}	#1S	#2S	Switch 1	Switch 2
LOW	Х	Х	ON	ON
HIGH	HIGH	HIGH	OFF	OFF
HIGH	LOW	HIGH	ON	OFF
HIGH	HIGH	LOW	OFF	ON

Table 2. Recommended External Component

Component	Description	Vendor	Parameter	Min.	Тур.	Unit
CBYP	0.1 μF, 10%, 6.3 V, X5R, 0201	Murata GRM033R60J104K	С	0.65	0.1	μF

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
Vcc	Supply/Control Voltage		-0.5	4.6	V
V _{CNTRL}	Control Input Voltage	#1S, #2S	-0.5	4.6	V
V _{SW(ON)}	DC Switch I/O Voltage (Switch Conducting)	1A, 1B, 2A, 2B	-0.5	3.3	V
$V_{\text{SW}(\text{OFF})}$	DC Switch I/O Voltage (Switch Isolated)	1A, 1B, 2A, 2B	-0.5	3.3	V
I _{SW}	Switch I/O Current	V _{CC} =0 V (Switch Conducting)		350	mA
ISWPEAK	Peak Switch Current	Pulsed at 1 ms Duration, <a><10% Duty Cycle		500	mA
	Human Body Model, ANSI/ESDA/JEDEC	I/O Ports		7	
	JS-001-2012	All Other Pins		5	
ESD	Charged Device Model, JEDEC: JESD22-C101			2	kV
		Contact		8	
	IEC 61000-4-2 System	Air Gap		15	
TA	Absolute Maximum Operating Temperature		-40	+85	°C
Θ_{JA}	Thermal Resistance, Junction-to-Ambient	2S2P JEDEC std. PCB		97	°C/W
T _{STG}	Storage Temperature		-65	+150	°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding these ratings or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CC(ON)}	Supply Voltage with Depletion Switch Conducting ((1A=1B; 2A=2B)	0	0.2	V
V _{CC(OFF)}	Supply Voltage with Depletion Switch Isolated (1Ar	≠1B; 2A≠2B; #1S=#2S=HIGH)	1.5	3.0	V
V _{SW(ON)}	DC Switch I/O Voltage	Switch Conducting	-0.3	3.0	V
V _{SW(OFF)}	DC Switch I/O Voltage	Switch Isolated	-0.3	3.0	V
V _{CNTRL}	Control Input Voltage	#1S, #2S	0	3.0	V

FSA551 — Dual SPST Depletion Mode Audio Switch

DC Electrical Characteristics

Unless otherwise specified, typical values are for $T_A=25^{\circ}C$.

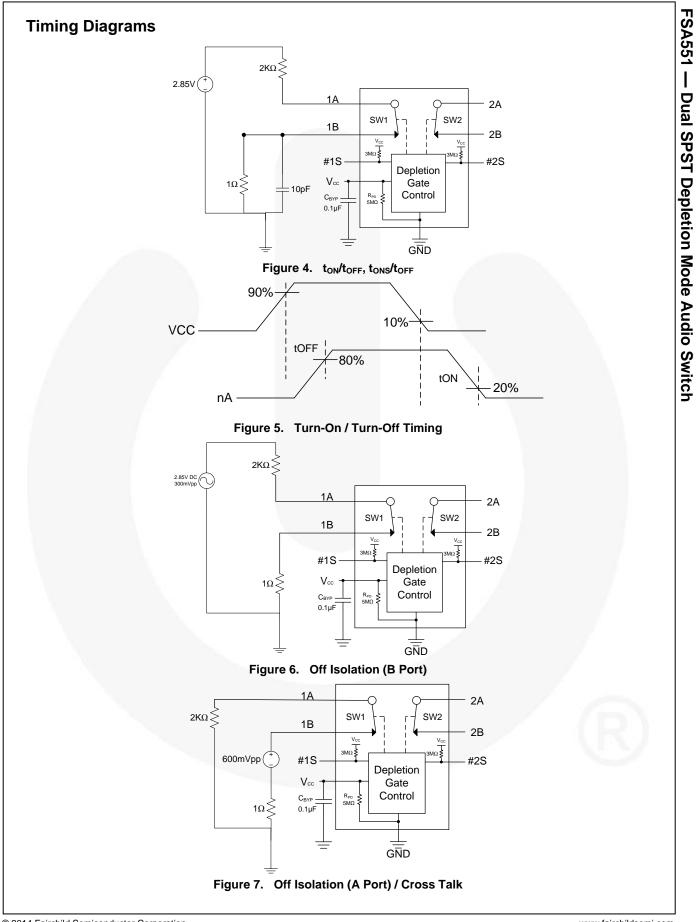
Symbol	Parameter	Condition	V _{cc} (V)	T _A =-4	0°C to	+85°C	Unit
e ye i				Min.	Тур.	Max.	•
$V_{\text{CC}(\text{HYS})}$	Supply Voltage Hysteresis				450		mV
I _{ON}	Switch-to-GND Leakage Current (Switch Conducting)	1A=2.6 V, 1B=Float, 2A=2.6 V, 2B=Float	0		0.1	5	μA
I _{OFF}	Switch-to-GND Leakage Current (Switch Isolated)	1A =2.6 V, 1B=GND, 2A=2.6 V, 2B=GND, #1S=#2S=V _{CC}	1.8		0.1	10	μA
I _{CCT}	Increase in I _{CC} per Control Voltage	#1S or #2S=1.2 V	3.0		7	15	μA
R _{ON}	Switch On Resistance	I_{SW} =100 mA, V_{SW} =-0.3 V to 3 V	0		0.38	0.60	Ω
ΔR_{ON}	Switch On Resistance Difference, Channel to Channel	I_{SW} =100 mA, V_{SW} =-0.3 V to 3 V	0		0.01		Ω
R _{FLAT(ON)}	On Resistance Flatness	I_{SW} =100 mA, V_{SW} =-0.3 V to 3 V	0		0.01		Ω
R _{PD}	V _{CC} Pull-Down Resistance		<0.2		5.0		MΩ
R _{PU}	Control Pull-Up Resistance		<0.2		3.0		MΩ
	Outland and Sumply Current	Switch Isolated, #1S=#2S=V _{CC}	1.5 - 3.0		70	120	
Icc	Quiescent Supply Current	Switch On	0.2		0.1	0.5	μA
VIH	Select Pin Input High Voltage		1.5 – 3.0	1.2			V
VIL	Select Pin Input Low Voltage		1.5 – 3.0			0.55	V

AC Electrical Characteristics

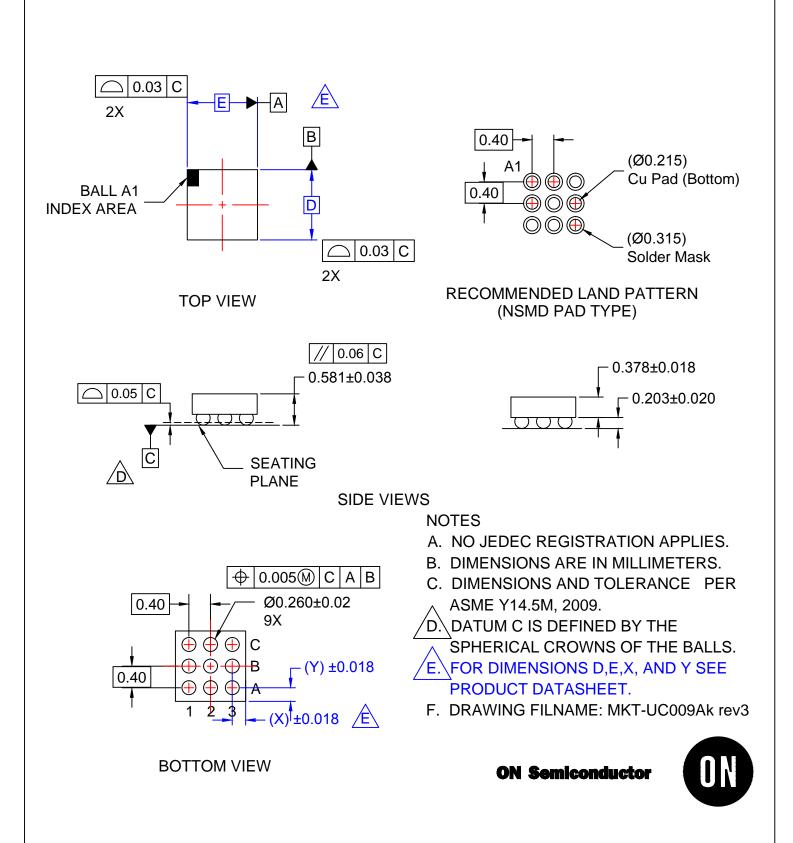
Unless otherwise specified, typical values are for $T_A=25^{\circ}C$.

Symbol	Deremeter	Condition		T _A =- 40°C to +85°C		+85°C	Uni
Symbol	Parameter	Condition	V _{cc} (V)	Min.	Тур.	Max.	t
t _{ON}	Turn-On Time V _{CC} to Output	$R_L=2 \text{ k}\Omega$, $C_L=10 \text{ pF}$, $V_{SW}=3 \text{ V}$, (Measured 90/10%), Figure 5	1.8 → 0		445		μs
toff	Turn-Off Time V _{CC} to Output	$R_L=2 k\Omega$, $C_L=10 pF$, $V_{SW}=3 V$, (Measured 90/10%), Figure 5	0 → 1.8		175		μs
t _{ONS}	Turn-On Time Control Pin	nA=2 kΩ to 2.85 V, nB=1 Ω//10 pF to GND, $\#_n$ S= 1.8 \rightarrow 0 V, (Measured 20/80%), Figure 5	1.8		205		μs
toffs	Turn-Off Time Control Pin	nA=2 kΩ to 2.85 V, nB=1 Ω//10 pF to GND, #nS= 0 → 1.8 V, (Measured 20/80%), Figure 4, Figure 5	1.8		29		μs
Oirra	Port A Off Isolation	$_{n}A=2 k\Omega$ to GND, $_{n}B=1 \Omega$ to GND, # $_{n}S=V_{CC}$, Port B V _{SW} =600 mV _{PP} Ground Referenced, (Measure at f=20 kHz), Figure 7	1.8		-75		dB
O _{IRRB}	Port B Off Isolation	$_{n}A=2 k\Omega$ to 2.85 V, $_{n}B=1 \Omega$ to GND, $\#_{n}S=V_{CC}$, Port A V _{DC} + 300 mV _{PP(AC)} , (Measure at f=20 kHz), Figure 6	1.8		-100		dB
BW	-3dB Bandwidth	$R_L=2 k\Omega, C_L=0 pF$	0		240		MHz
THD+N	Total Harmonic Distortion + Noise	$R_L=2 k\Omega$, f=20 Hz to 20 kHz, DC Bias=0 V, V _{SW} =600 mV _{PP} , Measurement BW < 22 kHz	0		0.0005		%

Capacitance


Symbol	Parameter	Condition		Т	= +25°	С	Unit
Symbol	Farameter	Condition	V _{cc} (V)	Min.	Тур.	Max.	Unit
Con	On Capacitance	f=1 MHz, 400 mV _{PP} , 1A, 1B, 2A, 2B	0		21		pF
C _{OFF}	Off Capacitance	f=1 MHz, 400 mV _{PP} , 1A, 1B, 2A, 2B, #1S=#2S=V _{CC}	1.8		25	/	pF
C _{CTRL}	Control Pin Capacitance	f=1 MHz, 400 mV _{PP} , #1S, #2S	1.8		2.5		pF

Oscillator Frequency


Symbol Parameter	Beremeter	Condition Vcc (V)		/	T _A = +25	°C	Unit
	Farameter	Condition	• V _{cc} (V)	Min.	Тур.	Max.	Unit
fosc	Oscillator Frequency ⁽¹⁾	Oscillator Enabled	1.8		775		kHz
f _{OSC%}	Oscillator Frequency Tolerance Over Process & Temperature ⁽¹⁾	Oscillator Enabled	1.8			30	%

Note:

1. Parameters guaranteed by Design and Characterization.

E	D	Х	Y
1.215±.03 mm	1.385±.03 mm	0.2075 mm	0.2925 mm

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: <u>FSA551UCX</u>