Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
FSA839 - Low-Voltage, 0.8Ω SPDT Analog Switch with Power-Off Isolation

Features

- Power-Off Isolation $\left(\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}\right)$
- $\quad 0.8 \Omega$ Maximum On Resistance $\left(\mathrm{R}_{\mathrm{ON}}\right)$ for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- 0.25Ω Maximum $R_{\text {ON }}$ Flatness for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Fast Turn-On and Turn-Off Times
- Control Input Switching Thresholds Independent of $V_{c c}$
- Break-Before-Make Enable Circuitry
- 0.4 mm WLCSP Packaging
- ESD Performance
- HBM per JESD22-A114, I/O to GND: 8 kV
- CDM per JESD22-C101: 500 V
- IEC61000-4-2 Contact / Air: 8 kV / 15 kV

Applications

- Cellular Phone
- Portable Media Player
- PDA

Description

The FSA839 is a high-performance Single-Pole / Double-Throw (SPDT) analog switch for audio applications driven by low-voltage (1.8 V) baseband processors or ASICs. The device features ultra-low R_{ON} of 0.8Ω (maximum) at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and operates over the wide V_{Cc} range of 1.65 V to 5.5 V . The device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-beforemake operation.

The FSA839 interfaces between the low-voltage ASIC and regular audio amplifiers and CODECs operating up to a 5.5 V supply range. The control circuitry allows for 1.8 V (typical) signals on the control pin (Sel).

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA839UCX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N3	6-Ball WLCSP, 0.4 mm Pitch	Tape and Reel

For Fairchild's definition of "green" Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Figure 1. Analog Symbol

Marking Information

KK = Lot Run Code
$X=$ Year
Y = Work Week
Z = Assembly Site
Figure 2. Top Mark with Pin 1 Orientation

Ball Configuration

Figure 3. Pin Assignments (Bottom View)
Ball Definitions

Ball	Name	Description
A1	B1	Data Port (Normally Open)
B1	GND	Ground
C1	B0	Data Ports (Normally Closed)
C2	V $_{\text {CC }}$	Supply Voltage
B2	A	Common Data Port
A2	Sel	Control Input

Truth Table

Control Input (Sel)	Function
LOW	B0 connected to A
HIGH	B1 connected to A

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{cc}	Supply Voltage		-0.5	6.5	V
$\mathrm{V}_{\text {Sw }}$	Switch Voltage ${ }^{(1)}$		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage ${ }^{(1)}$		-0.5	6.5	V
$\mathrm{I}_{\text {IK }}$	Input Diode Current			-50	mA
$\mathrm{I}_{\text {sw }}$	Switch Current (Continuous)			200	mA
ISWPEAK	Peak Switch Current (Pulsed at 1 ms Duration, <10\% Duty Cycle)			400	mA
P_{D}	Power Dissipation at $85^{\circ} \mathrm{C}$			180	mW
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (JEDEC: JESD22-A114)	I/O to GND: A		8	kV
		All Pins		2	
	Charged Device Model (JEDEC: JESD22-C101)			500	V
	Machine Model (JEDEC: JESD22-A115)			100	V
	IEC6100-4-2 Discharge System Test Performed on Fairchild's FSA859 Applications Testing Board	Contact		8	kV
		Air		15	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.65	5.50	V
SEL	Control Input Voltage	0	1.95	V
$\mathrm{~V}_{\mathrm{SW}}$	Switch Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance, Still Air		350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\text {IH }}$	Input Voltage High	$\begin{gathered} 1.65 \text { to } \\ 5.50 \end{gathered}$					1.0		V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low	$\begin{gathered} 1.65 \text { to } \\ 5.50 \end{gathered}$						0.57	V
I_{N}	Control Input Leakage	$\begin{gathered} 1.95 \text { to } \\ 5.50 \end{gathered}$	$\mathrm{V}_{\text {Sel }}=0$	-2		2	-20	20	nA
$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF}),}$ $\mathrm{I}_{\mathrm{NC}(\text { (OFF), }}$	Off-Leakage Current of Port B0 and $\mathrm{B} 1^{(5)}$	5.50	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=4.5,1 \mathrm{~V} \end{aligned}$	-10		10	-50	50	nA
		3.60	$A=1 \mathrm{~V}, 3.0 \mathrm{~V}$ $B 0$ or $B 1=3.0,1 V$	-10		10	-50	50	
		2.70	$\begin{aligned} & \mathrm{A}=0.5 \mathrm{~V}, 2.3 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.3,0.5 \mathrm{~V} \end{aligned}$	-10		10	-50	50	
		1.95	$\begin{aligned} & \mathrm{A}=0.3 \mathrm{~V}, 1.65 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.65,0.3 \mathrm{~V} \end{aligned}$	-5		5	-20	20	
$\mathrm{I}_{\mathrm{NO}(\mathrm{On}),}$ $\mathrm{I}_{\mathrm{NC}(\mathrm{On})}$	On-Leakage Current of Port B0 and $B 1^{(5)}$	5.50	$\begin{aligned} & \mathrm{A}=\text { Floating } \\ & \mathrm{B} 0 \text { or } \mathrm{B} 1=4.5,1 \mathrm{~V} \end{aligned}$	-20		20	-100	100	nA
		3.60	A=Floating B 0 or $\mathrm{B} 1=3.0,1 \mathrm{~V}$	-10		10	-20	20	
		2.70	A=Floating B 0 or $\mathrm{B} 1=2.3,0.5 \mathrm{~V}$	-10		10	-20	20	
		1.95	A=Floating B 0 or $\mathrm{B} 1=1.65,0.3 \mathrm{~V}$	-5		5	-20	20	
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Port $A^{(5)}$	5.50	$\mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V} ; \mathrm{B} 0 \text { or }$ $\mathrm{B} 1=1 \mathrm{~V}, 4.5 \mathrm{~V}$, or Floating	-20		20	-100	100	nA
		3.60	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 3.0 \mathrm{VB} 0 \text { or } \\ & \mathrm{B} 1=1 \mathrm{~V}, \\ & 3.0 \mathrm{~V} \text {, or Floating } \end{aligned}$	-10		10	-20	20	
		2.70	$\mathrm{A}=0.5 \mathrm{~V}, 2.3 \mathrm{~V}, \mathrm{~B} 0$ or $\mathrm{B} 1=0.5 \mathrm{~V}, 2.3 \mathrm{~V}$, or Floating	-10		10	-20	20	
		1.95	$\mathrm{A}=0.3 \mathrm{~V}, 1.65 \mathrm{~V}$; B0 or $\mathrm{B} 1=0.3 \mathrm{~V}, 1.65 \mathrm{~V}$, or Floating	-5		5	-20	20	
$\mathrm{I}_{\text {OFF }}$	Power Off Leakage Current of Port A \& Port B ${ }^{(5)}$	0	$\begin{aligned} & \mathrm{A}=0 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	-1.00	0.01	1.00	-5.00	5.00	$\mu \mathrm{A}$
$\mathrm{R}_{\text {PD }}$	Sel Internal PullDown Resistor	$\begin{gathered} 1.65 \text { to } \\ 1.95 \end{gathered}$			2.0				M ת
I_{cc}	Quiescent Supply Current	5.50	$\begin{aligned} & \mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {SEL }}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$			100		500	nA
		3.60	$\begin{aligned} & \mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {SEL }}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$			75		300	
		2.70	$\begin{aligned} & \mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{SEL}}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$			50		250	
		1.95	$\begin{aligned} & \mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{SEL}}=0 \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$			25		150	

Continued on the following page...

DC Electrical Characteristics (Continued)
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{I}_{\text {CCT }}$	Increase in I_{CC} per Control Input	5.50	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		26	40		50	$\mu \mathrm{A}$
		3.60	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		5	15		20	
		2.70	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		1	5		10	
		1.95	$\mathrm{V}_{\text {Sel }}=1.8 \mathrm{~V}$		0.01	1.00		3.00	
$I_{\text {ccz }}$	Supply Current Sleep	5.50	$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {Sel }}=$ Floating			0.5		1.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON }}$	Switch On Resistance ${ }^{(2,5)}$	4.50	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.5 \mathrm{~V} \end{aligned}$		0.50	0.75		0.80	Ω
		3.00	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.0 \mathrm{~V} \end{aligned}$		0.75	0.90		1.20	
		2.25	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.8 \mathrm{~V} \end{aligned}$		1.0	1.3		1.6	
		1.65	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{B0} \text { or } \mathrm{B} 1=1.2 \mathrm{~V} \end{aligned}$		2.5	5.0		7.0	
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Matching Between Channels ${ }^{(3,5)}$	4.50	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.5 \mathrm{~V} \end{aligned}$		0.05	0.10		0.10	Ω
		3.00	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.0 \mathrm{~V} \end{aligned}$		0.10	0.15		0.15	
		2.25	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{B0} \text { or } \mathrm{B} 1=1.8 \mathrm{~V} \end{aligned}$		0.15	0.20		0.20	
		1.65	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{B0} \text { or } \mathrm{B} 1=1.2 \mathrm{~V} \end{aligned}$		0.15	0.40		0.40	
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness ${ }^{(4,5)}$	4.50	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \mathrm{B0} \text { or } \\ & \mathrm{B} 1=1.0 \mathrm{~V}, 1.5 \mathrm{~V}, \\ & 2.5 \mathrm{~V} \end{aligned}$		0.075	0.250		0.250	Ω
		3.00	$\mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}$, B 0 or $\mathrm{B} 1=0.8 \mathrm{~V}$, 2.0 V		0.1	0.3		0.3	
		2.25	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{B0} \text { or } \mathrm{B} 1=0.8 \mathrm{~V}, \\ & 1.8 \mathrm{~V} \end{aligned}$		0.25	0.50		0.60	
		1.65	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & \mathrm{BO} \text { or } \mathrm{B} 1=0.6 \mathrm{~V}, \\ & 1.2 \mathrm{~V} \end{aligned}$		3.5				

Notes:

2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
3. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ maximum $-\mathrm{R}_{\mathrm{ON}}$ minimum; measured at identical V_{CC}, temperature, and voltage.
4. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
5. Guaranteed by characterization, not production tested for $\mathrm{V}_{\mathrm{CC}}=1.65-1.95 \mathrm{~V}$.

AC Electrical Characteristics

All typical value are at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$, and 5.0 V at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
t_{ON}	$\begin{aligned} & \text { Turn-On } \\ & \text { Time }^{(6)} \end{aligned}$	4.50 to 5.50	$\begin{aligned} & \mathrm{B} 0 \text { or } \mathrm{B} 1=\mathrm{V}_{\mathrm{Cc}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.0	12.0	25.0	1.0	30.0	ns	Figure 4
		3.00 to 3.60		5.0	15.0	30.0	3.0	35.0		
		2.30 to 2.70		5.0	20.0	35.0	5.0	40.0		
		1.65 to 1.95		10.0	50.0	70.0	10.0	75.0		
$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \text { Turn-Off } \\ & \text { Time }^{(6)} \end{aligned}$	4.50 to 5.50	$\begin{aligned} & \mathrm{B} 0 \text { or } \mathrm{B} 1=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.0	9.5	20.0	1.0	25.0	ns	Figure 4
		3.00 to 3.60		1.0	9.0	20.0	1.0	25.0		
		2.30 to 2.70		2.0	10.0	20.0	2.0	25.0		
		1.65 to 1.95		2.0	28.0	40.0	2.0	50.0		
$t_{\text {BBM }}$	Break- Before- Make Time ${ }^{(7)}$	4.50 to 5.50	$\begin{aligned} & \mathrm{B} 0 \text { or } \mathrm{B} 1=\mathrm{V}_{\mathrm{cc}} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.0	10.0	12.0	0.1	14.0	ns	Figure5
		3.00 to 3.60		1.0	14.0	16.0	1.0	17.0		
		2.30 to 2.70		1.0	21.0	25.0	1.0	27.0		
		1.65 to 1.95			35.0		2.0	50.0		
Q	Charge Injection	5.50	$\begin{aligned} & C_{L}=1.0 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		70				pC	Figure 7
		3.30			40					
		2.50			30					
		1.65			10					
OIRR	Off Isolation	1.8 to 5.0	$\begin{aligned} & \hline \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$		-55				dB	Figure 6
Xtalk	Crosstalk	1.8 to 5.0	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		55				dB	Figure 6
BW	$-3 \mathrm{db}$ Bandwidth	5.50	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		60				MHz	Figure 9
		3.30			60					
		2.50			55					
		1.65			50					
THD	Total Harmonic Distortion	1.80	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}_{\mathrm{PP}}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$.02 .001					\%	Figure 10
		5.00								
PSRR	Power Supply Rejection Ratio	3.3	$\mathrm{f}=217 \mathrm{~Hz} \text { on } \mathrm{V}_{\mathrm{CC}}$ at 500 mvpp		-23				dB	Figure 11

Notes:
6. Guaranteed by characterization, not production tested for $\mathrm{V}_{\mathrm{CC}}=1.65-1.95 \mathrm{~V}$.
7. Guaranteed by characterization, not production tested.

Capacitance

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}=}+25^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	0	$\mathrm{f}=1 \mathrm{MHz}$		3.2		pF
$\mathrm{C}_{\text {OFF }}$	B Port Off Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$		50		pF
$\mathrm{C}_{\text {ON }}$	A Port On Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$		150		pF

Test Diagrams

C_{L} includes fixture and stray capacitance.

Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 4. Turn On / Off Timing

C_{L} includes fixture and stray capacitance.

Figure 5. Break-Before-Make Timing

Figure 6. Off Isolation and Crosstalk

Test Diagrams (Continued)

Figure 7. Charge Injection

Figure 8. On / Off Capacitance Measurement Setup

Figure 9. Bandwidth

Figure 10. Harmonic Distortion

Figure 11. PSRR

Product Specific Dimensions

Product	D	\mathbf{E}	\mathbf{X}	\mathbf{Y}
FSA839UCX	$1.160 \pm .030$	$0.760 \pm .030$	0.180	0.180

SIDE VIEWS

BOTTOM VIEW

RECOMMENDED LAND PATTERN

(NSMD PAD TYPE)

NOTES:
A. NO JEDEC REGISTRATION APPLIES.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASMEY14.5M, 2009.
D. DATUM C, THE SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE TYPICAL HEIGHT IS 586 MICRONS ± 39 MICRONS (547-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y, SEE PRODUCT DATASHEET.
G. DRAWING FILENAME: MKT-UC006ACrev6.

FAIRCHILD

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\left({ }^{(1)}\right.}$	C SYSTEM
AttitudeEngine ${ }^{\text {TM }}$	FRFET ${ }^{\circledR}$		\checkmark GENERAL
Awinda ${ }^{\text {® }}$	Global Power Resource ${ }^{\text {SM }}$	${ }^{(8)}$	TinyBoost ${ }^{\text {® }}$
AX-CAP ${ }^{\text {® }}$ *	GreenBridge ${ }^{\text {TM }}$	Power Supply WebDesigner ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {® }}$
BitSiC ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	TinyCalc ${ }^{\text {™ }}$
Build it Now $^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	PowerXS ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
CorePLUS ${ }^{\text {™ }}$	Gmax ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TINYOPTOTM
CorePOWER ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	QFET ${ }^{\circledR}$	TinyPower ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	IntellimAX ${ }^{\text {TM }}$	$\mathrm{QS}^{\text {™ }}$	TinyPWM ${ }^{\text {™ }}$
CTL ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	Making Small Speakers Sound Louder	RapidConfigure ${ }^{\text {TM }}$	TranSiC ${ }^{\text {™ }}$
DEUXPEED ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	(${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
Dual Cool ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$		TRUECURRENT ${ }^{\text {® }}$ *
EcoSPARK ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	μ SerDes $^{\text {TM }}$
EfficientMax ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	SignalWise ${ }^{\text {TM }}$	
ESBC ${ }^{\text {™ }}$	MicroPak ${ }^{\text {M }}$	SmartMax ${ }^{\text {TM }}$ SMART START ${ }^{\text {TM }}$	SerDes*
Γ^{\circledR}	MicroPak2 ${ }^{\text {™ }}$	SMART START ${ }^{\text {TM }}$ Solution for Your Success ${ }^{\text {TM }}$	UHC^{\circledR}
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	Solutions for Your Success ${ }^{\text {TM }}$ SPM ${ }^{\text {® }}$	Ultra FRFET ${ }^{\text {TM }}$
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	STEALTH ${ }^{\text {TM }}$	UniFET ${ }^{\text {m }}$
FACT Quiet Series ${ }^{\text {TM }}$	MotionGrid ${ }^{\text {® }}$	SuperFET ${ }^{\text {® }}$	VCX ${ }^{\text {TM }}$
$\mathrm{FACT}^{\text {® }}$	MTi ${ }^{\text {® }}$	SuperSOT ${ }^{\text {mm-3 }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	MVN ${ }^{\text {M }}$	SuperSOT ${ }^{\text {TM }}$-6	VoltagePlus ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	mWSaver ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	Xsens ${ }^{\text {m }}$
FPS ${ }^{\text {™ }}$	OptoHiT ${ }^{\text {TM }}$	SupreMOS ${ }^{\text {S }}$ S ${ }^{\text {® }}$	仙童 ${ }^{\circledR}$
	OPTOLOGIC ${ }^{\circledR}$	Sync-Lock ${ }^{\text {TM }}$	

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

