

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

January 2015

FSA839 — Low-Voltage, 0.8 Ω SPDT Analog Switch with Power-Off Isolation

Description

make operation.

The FSA839 is a high-performance Single-Pole /

Double-Throw (SPDT) analog switch for audio

applications driven by low-voltage (1.8 V) baseband processors or ASICs. The device features ultra-low R_{ON}

of 0.8 Ω (maximum) at 4.5 V V_{CC} and operates over the

wide V_{CC} range of 1.65 V to 5.5 V. The device is fabricated with sub-micron CMOS technology to achieve

fast switching speeds and is designed for break-before-

The FSA839 interfaces between the low-voltage ASIC

and regular audio amplifiers and CODECs operating up to a 5.5 V supply range. The control circuitry allows for

1.8 V (typical) signals on the control pin (Sel).

Features

- Power-Off Isolation (V_{CC}=0 V)
- = 0.8 Ω Maximum On Resistance (R_{ON}) for 4.5 V V_{CC}
- 0.25 Ω Maximum R_{ON} Flatness for 4.5 V V_{CC}
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Fast Turn-On and Turn-Off Times
- Control Input Switching Thresholds Independent of V_{CC}
- Break-Before-Make Enable Circuitry
- 0.4 mm WLCSP Packaging
- ESD Performance
 - HBM per JESD22-A114, I/O to GND: 8 kV
 - CDM per JESD22-C101: 500 V
 - IEC61000-4-2 Contact / Air: 8 kV / 15 kV

Applications

- Cellular Phone
- Portable Media Player
- PDA

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA839UCX	-40°C to +85°C	N3	6-Ball WLCSP, 0.4 mm Pitch	Tape and Reel

Ø For Fairchild's definition of "green" Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html.</u>

Ball	Name	Description	
A1	B1	Data Port (Normally Open)	
B1	GND	Ground	
C1	B0	Data Ports (Normally Closed)	
C2	V _{cc}	Supply Voltage	
B2	A	Common Data Port	
A2	Sel	Control Input	

Truth Table

Control Input (Sel)	Function
LOW	B0 connected to A
HIGH	B1 connected to A

2

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	6.5	V
V _{SW}	Switch Voltage ⁽¹⁾		-0.5	V _{CC} + 0.5	V
V _{IN}	Input Voltage ⁽¹⁾		-0.5	6.5	V
I _{IK}	Input Diode Current			-50	mA
I _{SW}	Switch Current (Continuous)			200	mA
I _{SWPEAK}	Peak Switch Current (Pulsed at 1 ms Duration, <10%	% Duty Cycle)		400	mA
PD	Power Dissipation at 85°C			180	mW
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature			+150	°C
TL	Lead Temperature (Soldering, 10 Seconds)			+260	°C
	Human Bady Madal (JEDEC: JECD22 A114)	I/O to GND: A		8	
	Human Body Model (JEDEC: JESD22-A114)	All Pins		2	kV
ESD	Charged Device Model (JEDEC: JESD22-C101)			500	V
ESD	Machine Model (JEDEC: JESD22-A115)			100	V
	IEC6100-4-2 Discharge System Test Performed on Fairchild's FSA859 Applications Testing Board Contact Air			8	kV
				15	κV

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{cc}	Supply Voltage	1.65	5.50	V
SEL	Control Input Voltage	0	1.95	V
V _{sw}	Switch Input Voltage	0	V _{cc}	V
T _A	Operating Temperature	-40	+85	°C
θ_{JA}	Thermal Resistance, Still Air		350	°C/W

FSA839
Low-\
/oltage, 0.8Ω SPDT /
S
alog Switch w
h with Po
with Power-Off Isolati
solation

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	V _{cc} (V)	Conditions	Т	_A =+25°	с	T _A =-40 to +85°C		Unit
		,		Min.	Тур.	Max.	Min.	Max.	
V _{IH}	Input Voltage High	1.65 to 5.50					1.0		V
V _{IL}	Input Voltage Low	1.65 to 5.50						0.57	V
I _{IN}	Control Input Leakage	1.95 to 5.50	V _{Sel} =0	-2		2	-20	20	nA
		5.50	A=1 V, 4.5 V B0 or B1=4.5, 1 V	-10		10	-50	50	
I _{NO(0FF),}	Off-Leakage Current of Port B0	3.60	A=1 V, 3.0V B0 or B1=3.0, 1V	-10		10	-50	50	nA
I _{NC(OFF)} ,	and B1 ⁽⁵⁾	2.70	A=0.5 V, 2.3 V B0 or B1=2.3, 0.5V	-10		10	-50	50	ΠA
		1.95	A=0.3 V, 1.65 V B0 or B1=1.65 ,0.3 V	-5		5	-20	20	
	$I_{NO(On),}$ $I_{NC(On)}$ On-Leakage Current of Port B0 and B1 ⁽⁵⁾	5.50	A=Floating B0 or B1=4.5, 1V	-20		20	-100	100	
I _{NO(On),}		3.60	A=Floating B0 or B1=3.0, 1 V	-10		10	-20	20	– nA
		2.70	A=Floating B0 or B1=2.3, 0.5 V	-10		10	-20	20	
		1.95	A=Floating B0 or B1=1.65, 0.3 V	-5		5	-20	20	
	5.50	A=1 V, 4.5 V; B0 or B1=1 V, 4.5 V, or Floating	-20		20	-100	100		
	On Leakage	3.60	A=1V, 3.0VB0 or B1=1V, 3.0V, or Floating	-10		10	-20	20	
I _{A(ON)}	Current of Port A ⁽⁵⁾	2.70	A=0.5 V, 2.3 V, B0 or B1=0.5 V, 2.3 V, or Floating	-10		10	-20	20	nA
		1.95	A=0.3 V, 1.65 V; B0 or B1=0.3 V, 1.65 V, or Floating	-5		5	-20	20	
I _{OFF}	Power Off Leakage Current of Port A & Port B ⁽⁵⁾	0	A=0 to 5.5 V B0 or B1=0 to 5.5 V	-1.00	0.01	1.00	-5.00	5.00	μA
R_{PD}	Sel Internal Pull- Down Resistor	1.65 to 1.95			2.0				MΩ
. Quiescent		5.50	V_{IN} , V_{SEL} =0 or V_{CC} , I_{OUT} =0			100		500	
	Quiescent Supply	3.60	V_{IN} , V_{SEL} =0 or V_{CC} , I_{OUT} =0			75		300	~
I _{CC}	Current	2.70	V_{IN} , V_{SEL} =0 or V_{CC} , I_{OUT} =0			50		250	nA
		1.95	V_{IN} , V_{SEL} =0 or V_{CC} , I_{OUT} =0			25		150	

www.fairchildsemi.com

DC Electrical Characteristics (Continued)

All typical values are at 25°C unless otherwise specified.

Ourseland	Demonstern	V 00	Qanditiana		T _A =+25°	С	T _A =-40 t	o +85°C	11
Symbol	Parameter	V _{cc} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Unit
		5.50	V _{Sel} = 1.8 V		26	40		50	
	Increase in I _{CC} per Control	3.60	V _{Sel} = 1.8 V		5	15		20	
I _{CCT}	Input	2.70	V _{Sel} = 1.8 V		1	5		10	μA
		1.95	V _{Sel} = 1.8 V		0.01	1.00		3.00	
I _{CCZ}	Supply Current Sleep	5.50	V _{IN} , V _{Sel} = Floating			0.5		1.0	μA
		4.50	I _{OUT} =-100 mA, B0 or B1=2.5 V		0.50	0.75		0.80	
D	Switch On	3.00	I _{OUT} =-100 mA, B0 or B1=2.0 V		0.75	0.90		1.20	Ω
RON	R _{ON} Resistance ^(2,5)	2.25	I _{OUT} =-100 mA, B0 or B1=1.8 V		1.0	1.3		1.6	12
		1.65	I _{OUT} =-100 mA, B0 or B1=1.2 V		2.5	5.0		7.0	
		4.50	I _{OUT} =-100 mA, B0 or B1=2.5 V		0.05	0.10		0.10	
	On Resistance Matching	3.00	I _{OUT} =-100 mA, B0 or B1=2.0 V		0.10	0.15		0.15	Ω
ΔR_{ON}	Between Channels ^(3,5)	2.25	I _{OUT} =-100 mA, B0 or B1=1.8 V		0.15	0.20		0.20	12
		1.65	I _{OUT} =-100 mA, B0 or B1=1.2 V		0.15	0.40		0.40	
		4.50	I _{OUT} =-100 mA, B0 or B1=1.0V, 1.5 V, 2.5 V		0.075	0.250		0.250	
R _{FLAT(ON)} On Resistance Flatness ^(4,5)	3.00	I _{OUT} =-100 mA, B0 or B1=0.8 V, 2.0 V		0.1	0.3		0.3		
	2.25	I _{OUT} =-100 mA, B0 or B1=0.8 V, 1.8 V		0.25	0.50		0.60	Ω	
		1.65	I _{OUT} =-100mA, B0 or B1=0.6 V, 1.2 V		3.5				

FSA839 — Low-Voltage, 0.8Ω SPDT Analog Switch with Power-Off Isolation

Notes:

2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.

3. $\Delta R_{ON} = R_{ON}$ maximum – R_{ON} minimum; measured at identical V_{CC}, temperature, and voltage.

4. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

5. Guaranteed by characterization, not production tested for V_{CC} =1.65 – 1.95 V.

Symbol Parameter	V _{cc} (V)	Conditions	T _A =+25°C		T _A =-40 to +85°C		Unit	Figure		
				Min.	Тур.	Max.	Min.	Max.		-
	, Turn-On	4.50 to 5.50		1.0	12.0	25.0	1.0	30.0		
		3.00 to 3.60	B0 or B1=V _{CC} ,	5.0	15.0	30.0	3.0	35.0		Figure
t _{ON}	Time ⁽⁶⁾	2.30 to 2.70	R _L =50 Ω, C _L =35 pF	5.0	20.0	35.0	5.0	40.0	ns	4
		1.65 to 1.95		10.0	50.0	70.0	10.0	75.0		
		4.50 to 5.50		1.0	9.5	20.0	1.0	25.0		
		3.00 to 3.60	B0 or B1=V _{CC} ,	1.0	9.0	20.0	1.0	25.0		
t_{OFF}	Turn-Off Time ⁽⁶⁾	2.30 to 2.70	$R_L=50 \Omega,$ C _L =35 pF	2.0	10.0	20.0	2.0	25.0	ns	Figure 4
		1.65 to 1.95		2.0	28.0	40.0	2.0	50.0		
_		4.50 to 5.50		1.0	10.0	12.0	0.1	14.0		
	Break- Before-	3.00 to 3.60	B0 or B1=V _{CC} /2,	1.0	14.0	16.0	1.0	17.0		Figure
t _{BBM} Make Time ⁽⁷⁾	2.30 to 2.70	R _L =50 Ω, C _L =35 pF	1.0	21.0	25.0	1.0	27.0	ns	5	
	Time ⁽⁷⁾	1.65 to 1.95			35.0		2.0	50.0		
		5.50			70				pC	Figure 7
	Charge	3.30	C _L =1.0 nF,		40					
Q	Injection	2.50	V _{GEN} =0 V, R _{GEN} =0 Ω		30					
		1.65	I GEN 0 11		10					
OIRR	Off Isolation	1.8 to 5.0	f=1 MHz, R _L =50 Ω		-55				dB	Figure 6
Xtalk	Crosstalk	1.8 to 5.0	f=1 MHz, R _L =50 Ω		55				dB	Figure 6
		5.50			60					
	-3 db	3.30	D -50 0		60					Figure
BW	Bandwidth	2.50	R _L =50 Ω		55				MHz	9
		1.65			50					6
	Total	1.80	R _L =600 Ω, V _{IN} =0.5 V _{PP} ,		.02					Figure
THD Harmonic Distortion		5.00	f=20 Hz to 20 kHz		.001				%	10
PSRR	Power Supply Rejection Ratio	3.3	f=217 Hz on V _{CC} at 500 mvpp		-23				dB	Figure 11

Notes:

Guaranteed by characterization, not production tested for V_{CC} =1.65 – 1.95 V. Guaranteed by characterization, not production tested. 6.

7.

Capacitance

Symbol	Parameter		Conditions	T _{A=} +25⁰C			Unit	
Symbol	Farameter	V _{cc} (V)	Conditions	Min.	Тур.	Max.	Unit	
CIN	Control Pin Input Capacitance	0	f=1 MHz		3.2		pF	
C _{OFF}	B Port Off Capacitance	1.65 to 5.50	f=1 MHz		50		pF	
C _{ON}	A Port On Capacitance	1.65 to 5.50	f=1 MHz		150		pF	

FSA839 — Low-Voltage, 0.8Ω SPDT Analog Switch with Power-Off Isolation

Product	D	E	Х	Y
FSA839UCX	1.160 ±.030	0.760 ±.030	0.180	0.180

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification Product Status		Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: