

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor date sheets and/or specifications can and o vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, land papersonal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor as sume and its officers, employees, subsidiaries, affliates, and is for respective or indicated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the desig

multiplexer

FSAV430 Low Voltage 1.1GHz, 4-Channel, 2:1 Video Switch

Description

Throw

broad range of applications.

Double

The FSAV430 is a high performance Quad Single-Pole,

demultiplexer) video switch designed specifically for switching high definition YPbPr and computer RGB (up

to UXGA) signals. The bandwidth of this device is

1.1GHz (typical) which allows signals to pass with minimal edge and phase distortion. Image integrity is

maintained with low crosstalk, high off-isolation and low

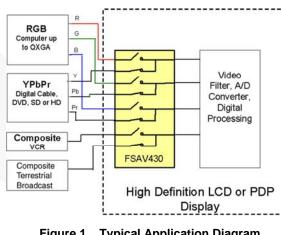
differential gain and phase. The low on resistance (4.5Ω) typical) minimizes signal insertion loss. Low voltage

operation (3V), low power consumption (1µA maximum) and small scale packaging make this device ideal for a

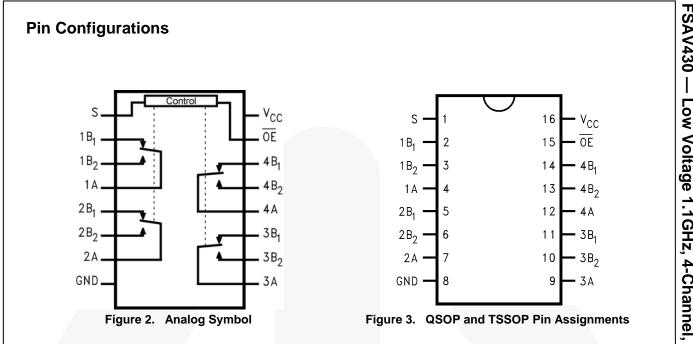
(2-to-1

(SPDT)

Features


- -40dB Off Isolation at 30MHz
- -60dB Non-Adjacent Channel Crosstalk at 30MHz
- 3dB Bandwidth: 1.1GHz
- On Resistance: 4.5Ω (Typical)
- Low Power Consumption: 1µA (Maximum)
- Control Input TTL Compatible
- Bidirectional Operation

Applications


- RGB Video Switch in LCD, Plasma and Projector Displays
- DVD-RW

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FSAV430MTCX	-40 to +85°C	16-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel
FSAV430QSCX	-40 to +85°C	16-Lead, Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150 inch Wide	Tape and Reel

Pin Descriptions

Pin #	Name	Description
15	/OE	Bus Switch Enabled
1	S	Select Input
4, 7, 9, 12	A	Bus A
2, 3, 5, 6, 10, 11,13, 14	B ₁ -B ₂	Bus B
8	GND	Ground
16	V _{cc}	Supply Voltage

Truth Table

S	/OE	Function
Don't Care	HIGH	Disconnected
LOW	LOW	A=B ₁
HIGH	LOW	A=B ₂

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	+4.6	V
Vs	DC Switch Voltage	-0.5	V _{CC} +0.5	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	+4.6	V
I _{IK}	DC Input Diode Current, V _{IN} < 0V	-50		mA
I _{OUT}	DC Output Sink Current		128	mA
I_{CC}/I_{GND}	DC V _{CC} / GND Current		±100	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
ESD	Human Body Model, JESD22-A114		4000	V

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{cc}	Power Supply		3.0	3.6	V
V _{IN}	Input Voltage		0	V _{cc}	V
V _{OUT}	Output Voltage		0	V _{cc}	V
t _r , t _f Input Rise and Fall Time	Switch Control Input	0	5	ns/V	
	Switch I/O	Switch I/O	0	DC	115/ V
T _A	Operating Temperature, Free Air		-40	+85	°C

Note:

2. Unused control inputs must be held HIGH or LOW; they may not float.

DC Electrical Characteristics

Typical values are at T_A = +25°C.

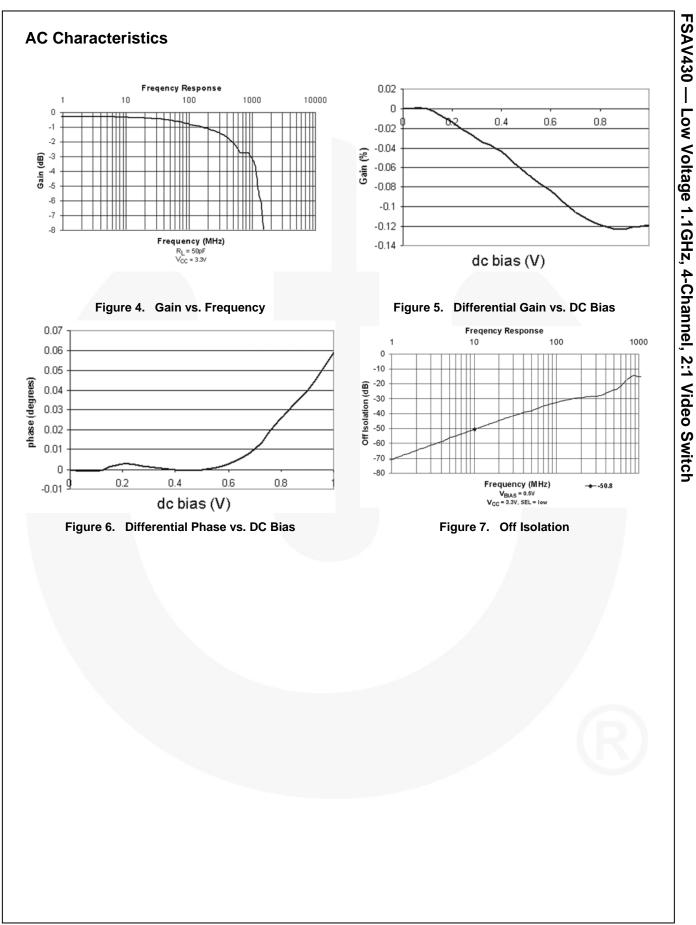
Symbol	Deremeter	Conditions		T _A = -40 to +85°C			
Symbol	PolParameterConditionsV _{CC} (V)		V _{CC} (V)	Min.	Тур.	Max.	Units
V _{ANALOG}	Analog Signal Range			0		2	V
V _{IK}	Clamp Diode Voltage	I _{IN} =-18mA	3.0			-1.2	V
V _{IH}	High-Level Input Voltage		3.0 to 3.6	2.0			V
VIL	Low-Level Input Voltage		3.0 to 3.6			0.8	V
I _I	Input Leakage Current	$0 \le V_{IN} \le 3.6V$	3.6			±1.0	μA
I _{OFF}	Off-State Leakage Current	$0 \le A, B \le V_{CC}$	3.6			±1.0	μA
р	R _{ON} Switch On Resistance ⁽³⁾	V _{IN} =1.0V, R _I =75Ω, I _{ON} =13mA	3.0		5.0	7.0	0
R _{ON}	Switch On Resistance	V _{IN} =2.0V, R _I =75Ω, I _{ON} =26mA	3.0		4.5	6.0	Ω
R _{FLAT(ON)}	On Resistance Flatness ⁽⁴⁾	I_{OUT} =13mA, V_{IN} =0 to V_{CC}	3.0		1		
I _{CC}	Quiescent Supply Current	V _{IN} =V _{CC} or GND, I _{OUT} =0	3.6			1	μA
ΔI_{CC}	Increase in I _{CC} per Input	One Input at 3.0V Other Inputs at V _{CC} or GND	3.6			30	mA

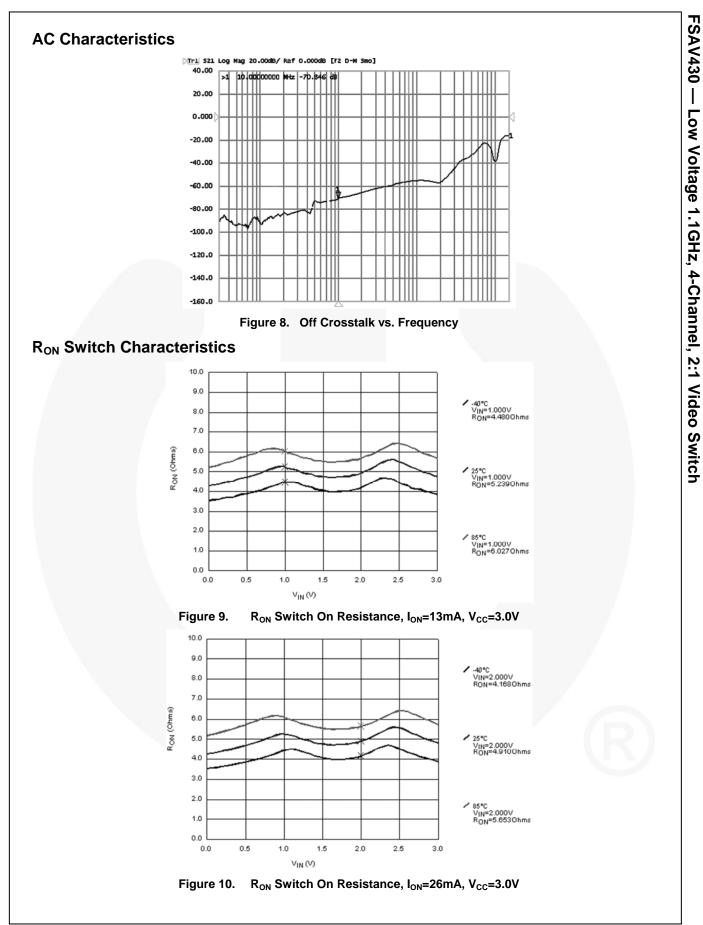
Notes:

3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

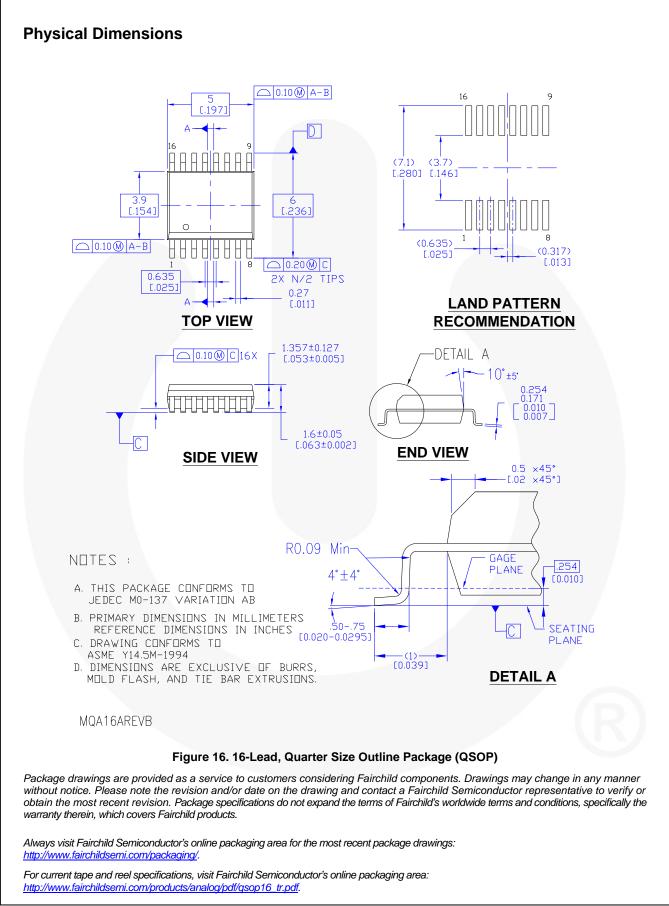
4. Flatness is defined as the difference between the maximum and minimum value on resistance over the specified range of conditions.

AC Electrical Characteristics

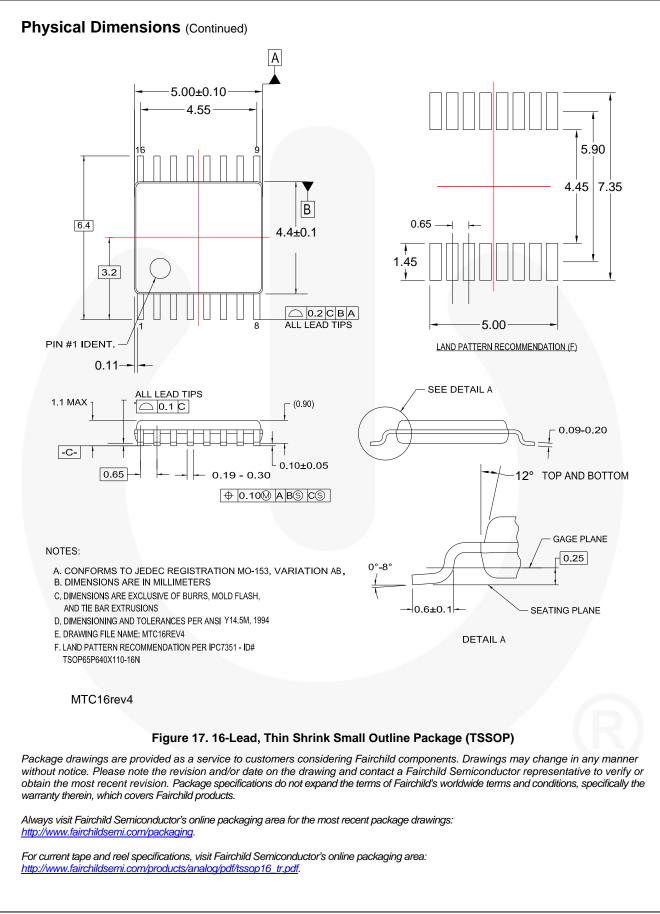

Typical values are at V_{CC} =3.3V and T_A = +25°C.

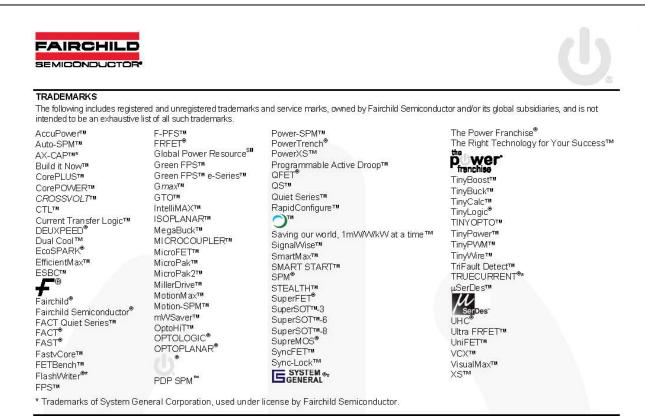

Symbol	Parameter	Conditions	V	T _A =-40 to+85°C			Units	Figure	
Symbol F	Farameter	Conditions	V _{cc}	Min.	Тур.	Max.	Units	Figure	
t	Turn On Time S to Bus A	B _n =2V	3.0 to 3.6		4.8	7.0	ns	Figure 11,	
t _{ON}	Output Enable Time OE to A		3.0 10 3.0		4.5	6.8	115	Figure 12	
	Turn Off Time S to Bus A	B _n =2V			2.2	4.0		Figure 11,	
t _{OFF}	Output Disable Time OE to A		3.0 to 3.6		2.2	3.5	ns	Figure 12	
D_G	Differential Gain	R _L =75Ω, f=3.58MHz	3.0 to 3.6		0.2		%	Figure 5, Figure 6	
D _P	Differential Phase	R _L =75Ω, f=3.58MHz	3.0 to 3.6		0.1		o	Figure 5, Figure 6	
O _{IRR}	Non-Adjacent Off Isolation	$R_L=75\Omega$, f=30MHz	3.0 to 3.6		-40		dB	Figure 7, Figure 13	
X _{TALK}	Non-Adjacent Channel Crosstalk	$R_L=75\Omega$, f=30MHz	3.0 to 3.6		-60		dB	Figure 8, Figure 14	
Б	-3dB Bandwidth	$R_L=50\Omega$	0.04-0.0			800			Figure 4,
B _W		R _L =75Ω	3.0 to 3.6		600	00		Figure 15	


Capacitance


Typical values are at V_{CC}= 3.3V and T_A=+25°C.

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} =0V	2.5	рF
C _{ON}	A/B On Capacitance	V _{CC} =3.3V, /OE=0V	12.0	рF
C _{OFF}	Port B Off Capacitance	V _{CC} =/OE=3.3V	4.0	pF





FSAV430 — Low Voltage 1.1GHz, 4-Channel, 2:1 Video Switch

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all waranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is cormat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 153

FSAV430 — Low Voltage 1.1GHz, 4-Channel, 2:1 Video Switch

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:FSAV430QSCXFSAV430MTCXFSAV430BQX