

Is Now Part of

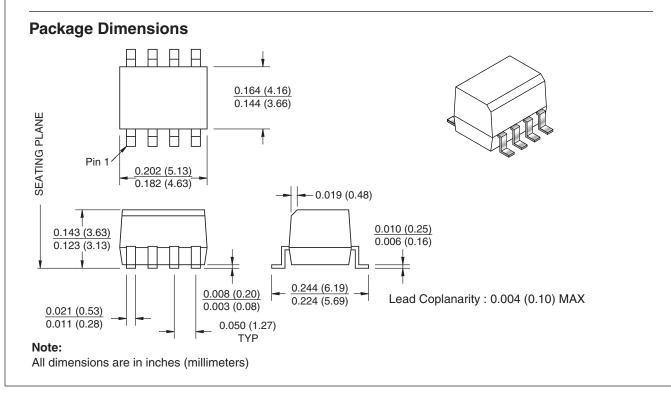
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

HCPL062N 3.3V Dual Channel High Speed-10 MBit/s Logic Gate Optocouplers

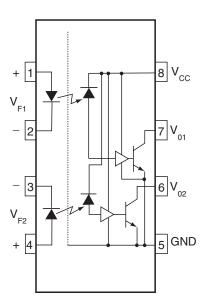
Features


- Compact SO8 package
- Very high speed 10MBit/s
- Superior CMR 25kV/µs minimum (1,000 volts common mode)
- Logic gate output
- Wired OR-open collector
- Fixed threshold detector design minimizes thermal impact on switching times
- U.L. recognized (File # E90700)

Applications

- Ground loop elimination
- Field buses
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer-peripheral interface
- Instrumentation input/output isolation

Description


The HCPL062N optocouplers consist of an AlGaAs LED, optically coupled to a very high speed integrated photodetector logic gate consisting of bipolar transistors on a CMOS process for reduced power consumption. The output features an open collector, thereby permitting wired OR outputs. The devices are housed in a compact small-outline package. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C. An internal noise shield and provides superior common mode rejection.

July 2006

HCPL062N 3.3V Dual Channel High Speed-10 MBit/s Logic Gate Optocouplers

Note:

The V_{CC} supply to each optoisolator must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic
or solid tantalum capacitor with good high frequency characteristic and should be connected no further than 3mm
from the V_{CC} and GND pins of each device.

Truth Table (Positive Logic)

Input	Output
Н	L
L	Н

A $0.1 \mu F$ bypass capacitor must be connected between pins 8 and 5.

HCPL062N
3.3V
Dual
N 3.3V Dual Channel
High
Speed-1
Speed-10 MBit/s Logic Gate Opto
Logic G
iate C
Optocouplers

Absolute Maximum Ratings (No derating required up t	to 85°C)
---	----------

Symbol	Parameter	Value	Units	
T _{STG}	Storage Temperature	-40 to +125	°C	
T _{OPR}	Operating Temperature	-40 to +85	°C	
EMITTER		łł		
١ _F	DC/Average Forward Input Current (each channel)	50	mA	
V _R	Reverse Input Voltage (each channel)	5.0	V	
PI	Power Dissipation	45	mW	
DETECTOR		ł		
V _{CC} (1 minute max)	Supply Voltage	7.0	V	
Ι _Ο	Output Current (each channel)	15	mA	
Vo	Output Voltage (each channel)	7.0	V	
Po	Collector Output Power Dissipation	85	mW	

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
I _{FL}	Input Current, Low Level	0	250	μΑ
I _{FH}	Input Current, High Level	6.3 ⁽²⁾	15	mA
V _{CC}	Supply Voltage, Output	2.7	3.3	V
T _A	Operating Temperature	-40	+85	°C
N	Fan Out (TTL load)	-	5	TTL Loads
RL	Output Pull-up	330	4K	Ω

Note:

2. 6.3mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less

Electrical Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$ Unless otherwise specified.)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
EMITTER	•		•			
V _F	Input Forward Voltage	I _F = 10mA	-	-	1.8	V
		T _A =25°C	-	-	1.75	
B _{VR}	Input Reverse Breakdown Voltage	I _R = 10μA	5.0	_	_	V
$\Delta V_F / \Delta T_A$	Input Diode Temperature Coefficient	I _F = 10mA	-	-1.5	_	mV/°C
DETECTO	R					
I _{CCH}	High Level Supply Current	I _F = 0mA, V _{CC} = 3.3V	-	7.1	10	mA
I _{CCL}	Low Level Supply Current	$I_{F} = 10 \text{mA}, V_{CC} = 3.3 \text{V}$	-	6.7	15	mA

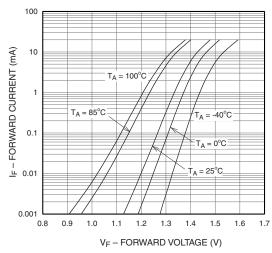
Switching Characteristics ($T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $V_{CC} = 3.3$ V, $I_F = 7.5$ mA Unless otherwise specified.)

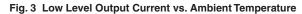
Symbol	AC Characteristics	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
T _{PLH}	Propagation Delay Time to Output High Level	$R_L = 350\Omega$, $C_L = 15pF$ Note 4, Fig. 10	-	-	90	ns
T _{PHL}	Propagation Delay Time to Output Low Level	$R_L = 350\Omega$, $C_L = 15pF$ Note 5, Fig. 10	_	_	75	ns
T _{PHL} –T _{PLH}	Pulse Width Distortion	$R_L = 350\Omega$, $C_L = 15pF$ Fig. 10	-	-	25	ns
t _r	Output Rise Time (10–90%)	$R_L = 350\Omega, C_L = 15pF)$ Note 6, Fig. 10	-	16	_	ns
t _f	Output Fall Time (90–10%)	$R_L = 350\Omega$, $C_L = 15pF$ Note 7, Fig. 10	-	4	-	ns
ICM _H I	Common Mode Transient Immunity (at Output High Level)		25,000	_	_	V/µs
ICM _L I	Common Mode Transient Immunity (at Output Low Level)		25,000	_	_	V/µs

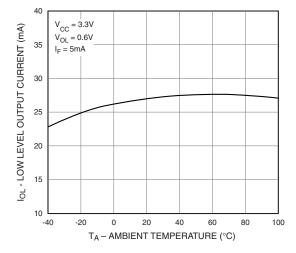
Transfer Characteristic	$T_A = -40^{\circ}C$ to $+85^{\circ}C$ Unless	otherwise specified.)
-------------------------	---	-----------------------

Symbol	DC Characteristics	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
V _{OL}	Low Level Output Voltage	$V_{CC} = 3.3V$, $I_F = 5mA$, $I_{OL} = 13mA$	_	_	0.6	V
I _{FT}	Input Threshold Current	$V_{CC} = 3.3V, V_{O} = 0.6V, I_{OL} = 13mA$	_	_	5	mA

Isolation Characteristics (T_A = -40°C to +85°C Unless otherwise specified.)

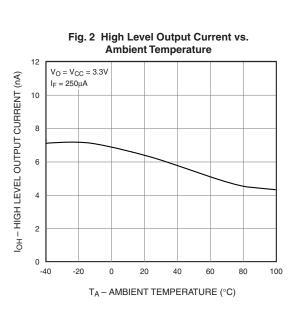
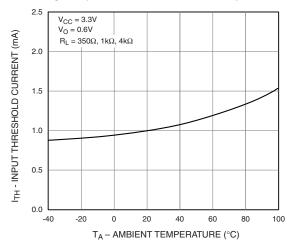

Symbol	Characteristics	Test Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	$\label{eq:relative} \begin{split} & \text{Relative humidity} = 45\% \\ & \text{T}_{\text{A}} = 25^{\circ}\text{C}, \ \text{t} = 5 \ \text{sec.} \\ & \text{V}_{\text{I-O}} = 3000 \ \text{VDC}, \ \text{Note 10} \end{split}$	_	_	1.0	μΑ
V _{ISO}	Withstand Insulation Test Voltage	$\label{eq:R_H} \begin{array}{l} R_{H} < 50\%, T_{A} = 25^{\circ}C \\ I_{I \text{-}O} \leq 2\mu\text{A}, t = 1 \text{min.}, \\ \text{Note 10} \end{array}$	2500	_	_	V _{RMS}
R _{I-O}	Resistance (Input to Output)	V _{I-O} = 500V, Note 10	-	10 ¹²	-	Ω
C _{I-O}	Capacitance (Input to Output)	f = 1MHz, Note 10	_	0.6	_	pF

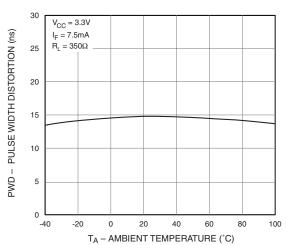

Notes:

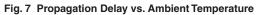

- 3. All typical values are at V_{CC} = 3.3V, T_A = 25°C unless otherwise specified.
- t_{PLH} Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
- t_{PHL} Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
- 6. t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- 7. t_f Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., V_{OUT} > 2.0 V). Measured in volts per microsecond (V/μs).
- CM_L The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state (i.e., V_{OUT} < 0.8 V). Measured in volts per microsecond (V/μs).
- 10. Device considered a two-terminal device: Pins 1,2,3 and 4 shorted together, and Pins 5,6,7 and 8 shorted together.
- 11. The power supply bypass capacitors must be no further than 3mm from the leads of the optocoupler. A low inductance ground plane width of with ≤ 5nHy of series lead inductance is required.

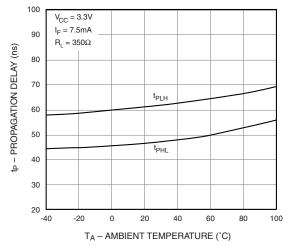
Typical Performance Curves

Fig. 1 Forward Current vs. Forward Voltage

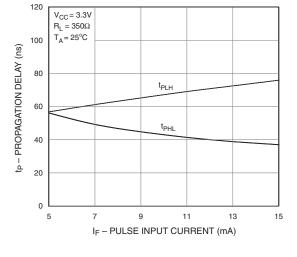
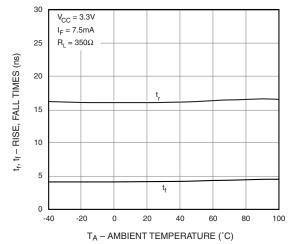
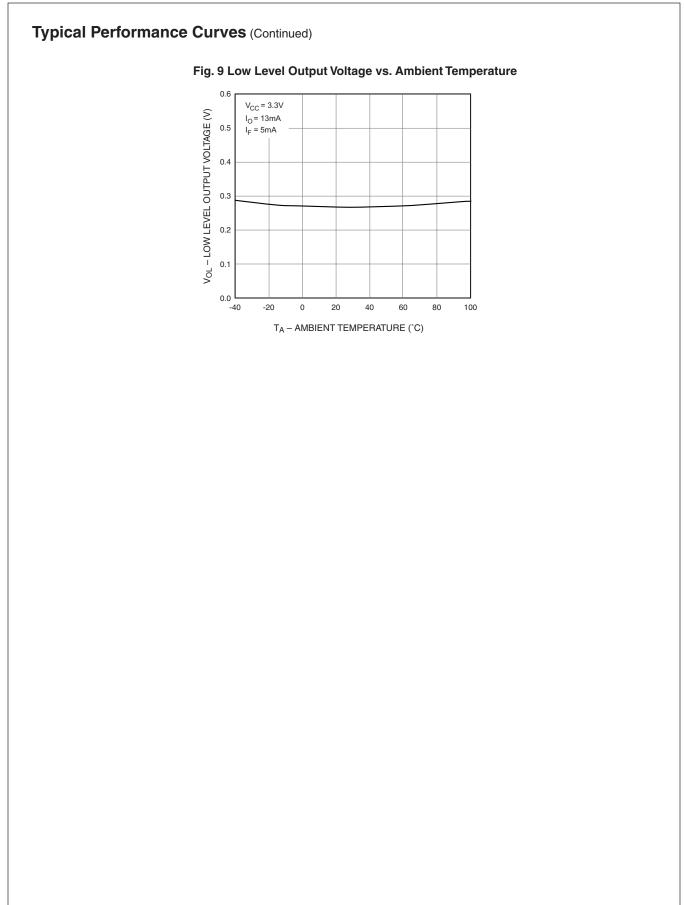
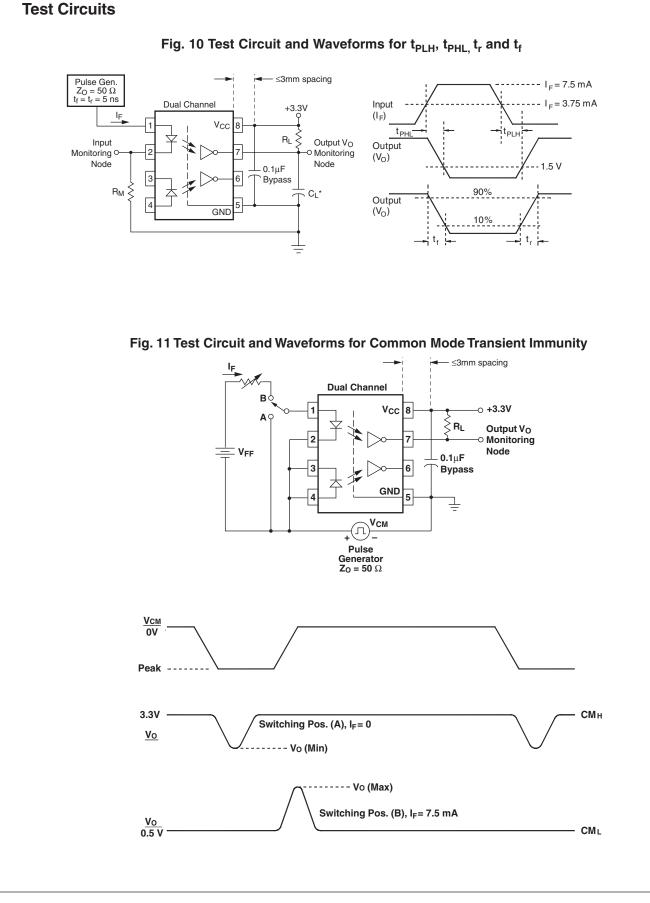

Fig. 4 Input Threshold Current vs. Temperature

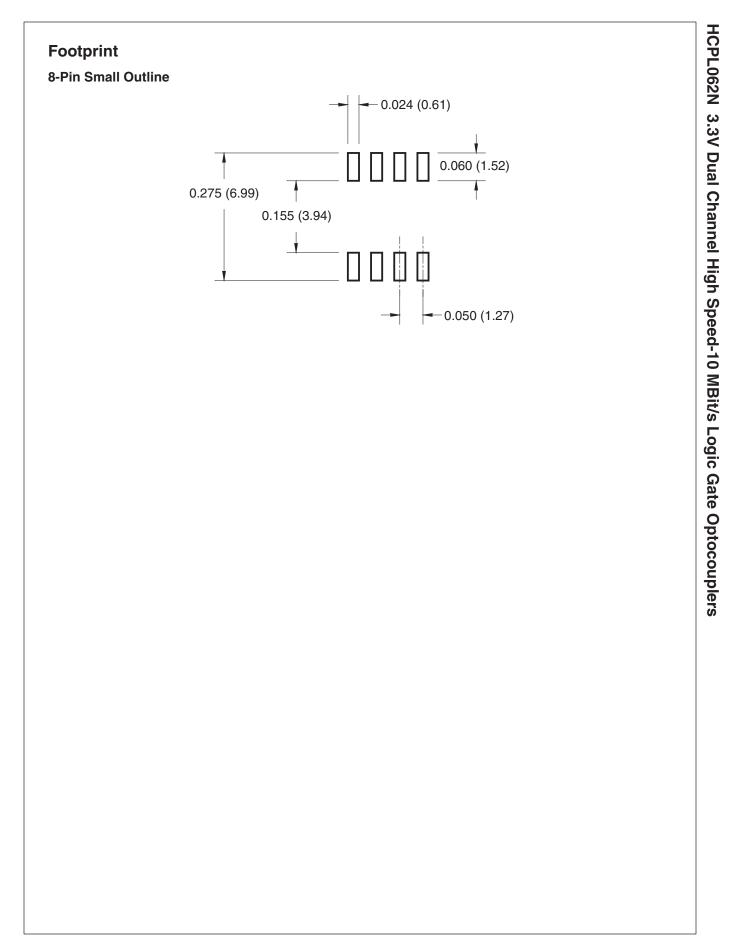


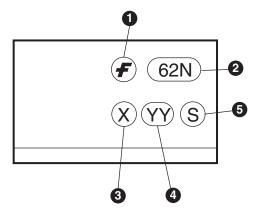


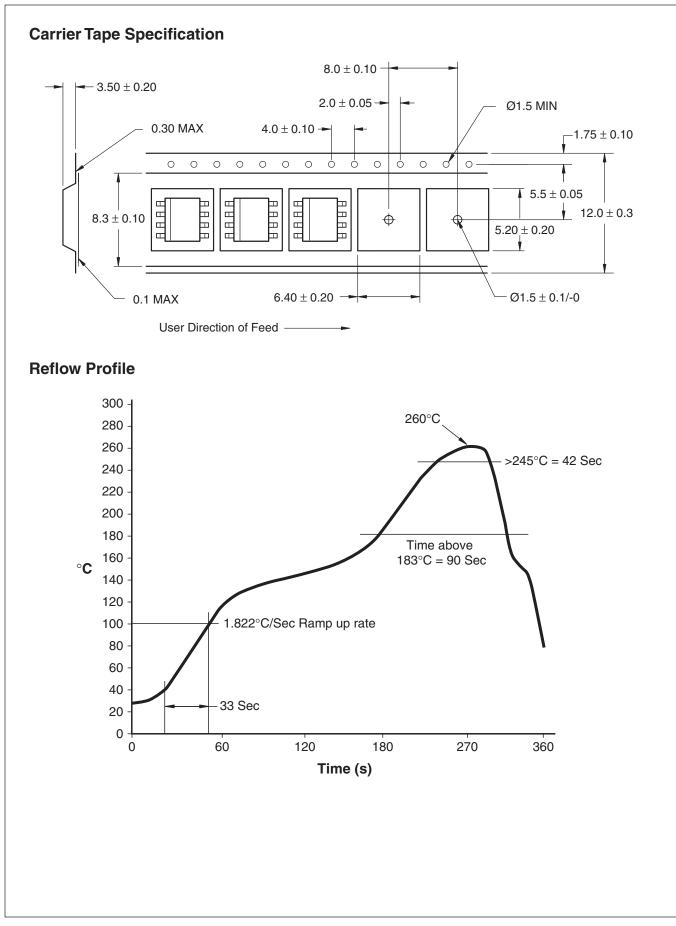
Typical Performance Curves (Continued)

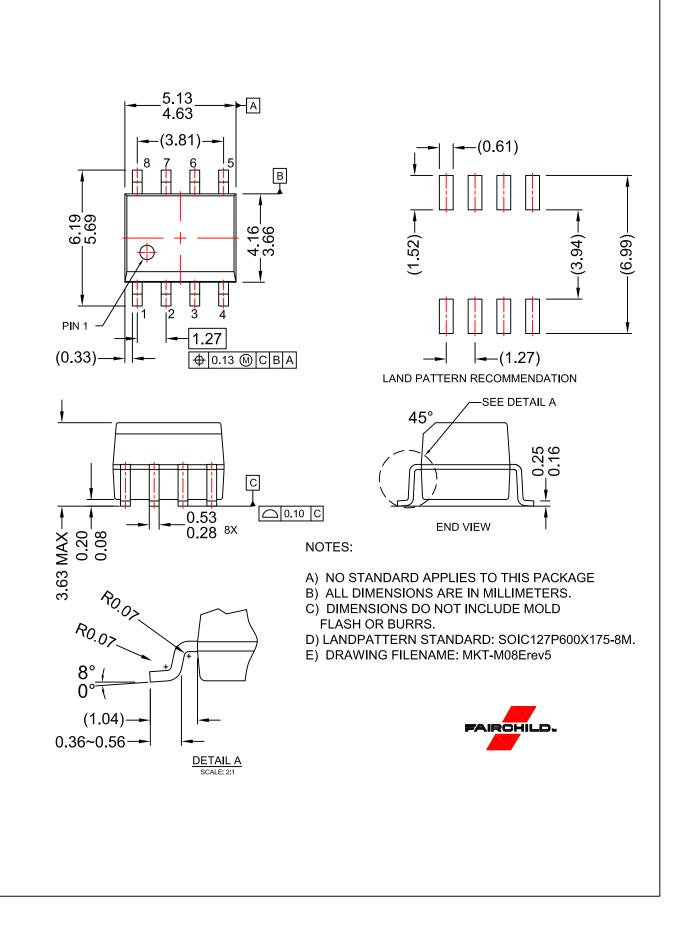
Fig. 5 Pulse Width Distortion vs. Ambient Temperature

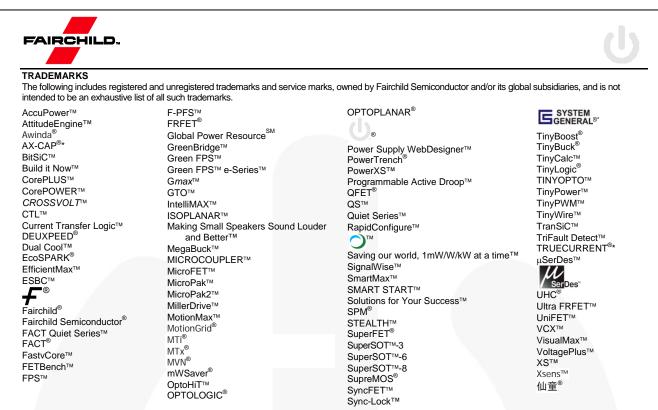






Fig. 8 Rise and Fall Times vs. Ambient Temperature


9


Ordering Information


Option	Order Entry Identifier	Description	
No Suffix	HCPL062N	Shipped in tubes (50 units per tube)	
R1	HCPL062NR1	Tape and Reel (500 units per reel)	
R2	HCPL062NR2	Tape and Reel (2500 units per reel)	


Marking Information

Definitions		
1	Fairchild logo	
2	Device number	
3	One digit year code, e.g., '3'	
4	Two digit work week ranging from '01' to '53'	
5	Assembly package code	

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: HCPL062N HCPL062NR2