

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

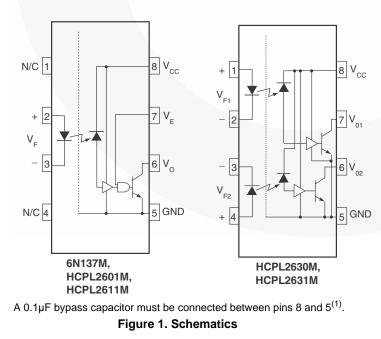
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

January 2016

Single-Channel: 6N137M, HCPL2601M, HCPL2611M Dual-Channel: HCPL2630M, HCPL2631M 8-Pin DIP High-Speed 10 MBit/s Logic Gate Optocouplers

Description

13 mA (fan out of 8).


Features

- Very High Speed 10 MBit/s
- Superior CMR 10 kV/µs
- Fan-out of 8 Over -40°C to +85°C
- Logic Gate Output
- Strobable Output
- Wired OR-open Collector
- Safety and Regulatory Approvals
- UL1577, 5,000 VAC_{RMS} for 1 Minute
 DIN EN/IEC60747-5-5

Applications

- Ground Loop Elimination
 LSTTL to TTL, LSTTL or 5 V CMOS
- Line Receiver, Data Transmission
- Data Multiplexing
- Switching Power Supplies
- Pulse Transformer Replacement
- Computer-peripheral Interface

Schematics

Package Outlines

The 6N137M, HCPL2601M, HCPL2611M single-channel

and HCPL2630M, HCPL2631M dual-channel optocouplers consist of a 850 nm AlGaAS LED, optically coupled

to a very high speed integrated photo-detector logic gate

with a strobable output. This output features an open col-

lector, thereby permitting wired OR outputs. The

switching parameters are guaranteed over the tempera-

ture range of -40°C to +85°C. A maximum input signal of

5 mA will provide a minimum output sink current of

An internal noise shield provides superior common mode

rejection of typically 10 kV/µs. The HCPL2601M and

HCPL2631M has a minimum CMR of 5 kV/µs. The

HCPL2611M has a minimum CMR of 10 kV/µs.

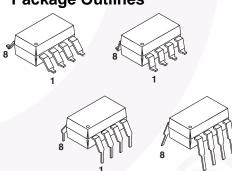


Figure 2. Package Options

Truth Table (Positive Logic)

Enable	Output					
Н	L					
Н	Н					
L	Н					
L	Н					
NC	L					
NC	Н					
	H H L L NC					

©2009 Fairchild Semiconductor Corporation 6N137M, HCPL26XXM Rev. 1.6

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics	
	< 150 V _{RMS}	I–IV
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
	< 450 V _{RMS}	I–III
	< 600 V _{RMS}	I–III
Climatic Classification		40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with t _m = 10 s, Partial Discharge < 5 pC	1,335	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1,669	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	890	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6,000	V _{peak}
	External Creepage	≥ 8.0	mm
	External Clearance	≥ 7.4	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10.16	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
Τ _S	Case Temperature ⁽²⁾	150	°C
I _{S,INPUT}	Input Current ⁽²⁾	200	mA
P _{S,OUTPUT}	Output Power (Duty Factor $\leq 2.7\%$) ⁽²⁾	300	mW
R _{IO}	Insulation Resistance at T_S , $V_{IO} = 500 V^{(2)}$	> 10 ⁹	Ω

Notes:

The V_{CC} supply to each optoisolator must be bypassed by a 0.1 μF capacitor or larger. This can be either a ceramic
or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to
the package V_{CC} and GND pins of each device.

2. Safety limit value - maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Value	Unit		
T _{STG}	Storage Temperature	-40 to +125	°C		
T _{OPR}	Operating Temperature		-40 to +100	°C	
ТJ	Junction Temperature		-40 to +125	°C	
T _{SOL}	Lead Solder Temperature		260 for 10 sec	°C	
Symbol	Parameter	Device	Value	Unit	
EMITTER					
L (a) (a)	DO/Average Fernand Innut Overant Day Channel	Single Channel	50	A	
I _F (avg)	DC/Average Forward Input Current Per Channel	Dual Channel	30	mA	
V _E	Enable Input Voltage Not to Exceed V _{CC} by more than 500 mV	Single Channel	5.5	V	
V _R	Reverse Input Voltage Per Channel	All	5.0	V	
D	Input Dower Dissinction Der Channel	Single Channel	100	mW	
PI	Input Power Dissipation Per Channel	Dual Channel	45	mvv	
DETECTOR					
V _{CC}	Supply Voltage	All	-0.5 to 7.0	V	
I _O (avg)	Average Output Current Per Channel All		25	mA	
l _O (pk)	Peak Output Current Per Channel All		50	mA	
V _O	Output Voltage Per Channel	All	-0.5 to 7.0	V	
Р	Output Dower Dissinction Der Channel	Single Channel	85	mW	
P _O	Output Power Dissipation Per Channel Dual Channel		60	TIVV	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	4.5	5.5	V
I _{FL}	Input Current, Low Level	0	250	μA
I _{FH}	Input Current, High Level	6.3 ⁽³⁾	20.0	mA
V _{EL}	Enable Voltage, Low Level	0	0.8	V
V _{EH}	Enable Voltage, High Level	2.0	V _{CC}	V
T _A	Ambient Operating Temperature	-40	+85	°C
Ν	Fan Out (TTL load)		8	

Note:

3. 6.3 mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0 mA or less.

Electrical Characteristics

Individual Component Characteristics (V_{CC} = 5.5 V, $T_A = 0^{\circ}C$ to 70°C unless otherwise specified)

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER						•	•
V	Input Forward Voltage	All	I _F = 10 mA, T _A = 25°C		1.45	1.70	V
V _F	Input Forward Voltage	All	I _F = 10 mA			1.80	v
B_{VR}	Input Reverse Breakdown Voltage	All	I _R = 10 μA	5.0			V
C _{IN}	Input Capacitance	All	V _F = 0, f = 1 MHz		60		pF
$\Delta V_{F} / \Delta T_{A}$	Temperature Coefficient of Forward Voltage	All	I _F = 10 mA		-1.4		mV/°C
DETECTO	R						
	Logia Low Supply Current	Single Channel	$I_F = 10 \text{ mA}, V_O = \text{Open}, V_E = 0.5 \text{ V}$		8	13	— mA
I _{CCL}	Logic Low Supply Current	Dual Channel	$I_{F1} = I_{F2} = 10 \text{ mA},$ $V_O = Open$		14	21	
I _{CCH}	Logic High Supply Current	Single Channel	$I_F = 0 \text{ mA}, V_O = \text{Open}, V_E = 0.5 \text{ V}$		6	10	mA
		Dual Channel	I _F = 0 mA, V _O = Open,		10	15	
I _{EL}	Low Level Enable Current	Single Channel	V _E = 0.5 V		-0.7	-1.6	mA
I _{EH}	High Level Enable Current	Single Channel	V _E = 2.0 V		-0.5	-1.6	mA
V _{EL}	Low Level Enable Voltage	Single Channel	I _F = 10 mA ⁽⁴⁾			0.8	V
V _{EH}	High Level Enable Voltage	Single Channel	I _F = 10 mA	2.0			V

Note:

4. Enable Input – No pull up resistor required as the device has an internal pull up resistor.

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
I _{FT}	Input Threshold Current	All	$V_{O} = 0.6 V, V_{E} = 2.0 V,$ $I_{OL} = 13 mA$		3	5	mA
I _{ОН}	HIGH Level Output Current	All	$V_{O} = 5.5 \text{ V}, I_{F} = 250 \ \mu\text{A}, V_{E} = 2.0 \ \text{V}$			100	μA
V _{OL}	LOW Level Output Voltage	All	$I_F = 5 \text{ mA}, V_E = 2.0 \text{ V},$ $I_{OL} = 13 \text{ mA}$		0.4	0.6	V

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
, P	Propagation Delay Time to Logic LOW	All	$ \begin{array}{l} {\sf R}_{\sf L} = 350 \ \Omega, \ {\sf C}_{\sf L} = 15 \ {\sf pF}, \\ {\sf T}_{\sf A} = 25^{\circ} {\sf C}^{(5)} \ ({\sf Fig. 14}) \end{array} $	25	40	75	- ns
PHL			$R_L = 350 $ Ω, $C_L = 15 $ pF ⁽⁵⁾ (Fig. 14)			100	113
+	Propagation Delay	All	$R_L = 350 \Omega$, $C_L = 15 pF'$ $T_A = 25°C^{(6)}$ (Fig. 14)	20	40	75	
^t PLH	Time to Logic HIGH	All	$R_L = 350 $ Ω, $C_L = 15 $ pF ⁽⁶⁾ (Fig. 14)			100	- ns
t _{PHL} -t _{PLH}	Pulse Width Distortion	All	R _L = 350 Ω, C _L = 15 pF (Fig. 14)		1	35	ns
t _R	Output Rise Time (10% to 90%)	All	$R_L = 350 \Omega$, $C_L = 15 pF^{(7)}$ (Fig. 14)		30		ns
t _F	Output Fall Time (90% to 10%)	All	$R_L = 350 \Omega$, $C_L = 15 pF^{(8)}$ (Fig. 14)		10		ns
t _{EHL}	Enable Propagation Delay Time to Output LOW Level	Single Channel	V_{EH} = 3.5 V, R _L = 350 Ω, C _L = 15 pF ⁽⁹⁾ (Fig. 15)		15		ns
t _{ELH}	Enable Propagation Delay Time to Output HIGH Level	Single Channel	$V_{EH} = 3.5$ V, R _L = 350 Ω, C _L = 15 pF ⁽¹⁰⁾ (Fig. 15)		15		ns
		6N137M, HCPL2630M	I _F = 0 mA, V _{CM} = 50 V _{PEAK} , R _L = 350 Ω, T _A = 25°C ⁽¹¹⁾		10,000		
CM _H	Common Mode Transient Immunity	HCPL2601M, HCPL2631M	(Fig. 16)	5000	10,000		V/µs
	at Logic High	HCPL2611M	$ I_{F} = 0 \text{ mA}, V_{CM} = 400 \text{ V}_{PEAK}, \\ R_{L} = 350 \ \Omega, T_{A} = 25^{\circ}\text{C}^{(11)} \\ (\text{Fig. 16}) $	10,000	15,000		
CM _I		6N137M, HCPL2630M	$V_{\rm CM} = 50 V_{\rm PEAK}$		10,000		
	Common Mode Transient Immunity	HCPL2601M, HCPL2631M	$R_L = 350 \Omega, T_A = 25^{\circ}C^{(11)}$ (Fig. 16)	5000	10,000		V/µs
	at Logic Low	HCPL2611M	$V_{CM} = 400 V_{PEAK},$ $R_L = 350 \Omega, T_A = 25^{\circ}C^{(11)}$ (Fig. 16)	10,000	15,000		

Notes:

 t_{PHL} – Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.

6. t_{PLH} – Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.

7. t_R - Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.

8. t_F – Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.

- 9. t_{EHL} Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input voltage pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 10. t_{ELH} Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 11. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0$ V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O > 2.0$ V).

Dual-Channel: HCPL2630M, HCPL2631M — 8-Pin DIP High-Speed 10 MBit/s Logic Gate C	Single-Channel: 6N137M, HCPL2601M, HCPL2611M
lic	
ate O	
ptocouplers	

Unit

VAC_{RMS}

Ω

pF

μΑ

1.0

Electrical Characteristics (Continued)

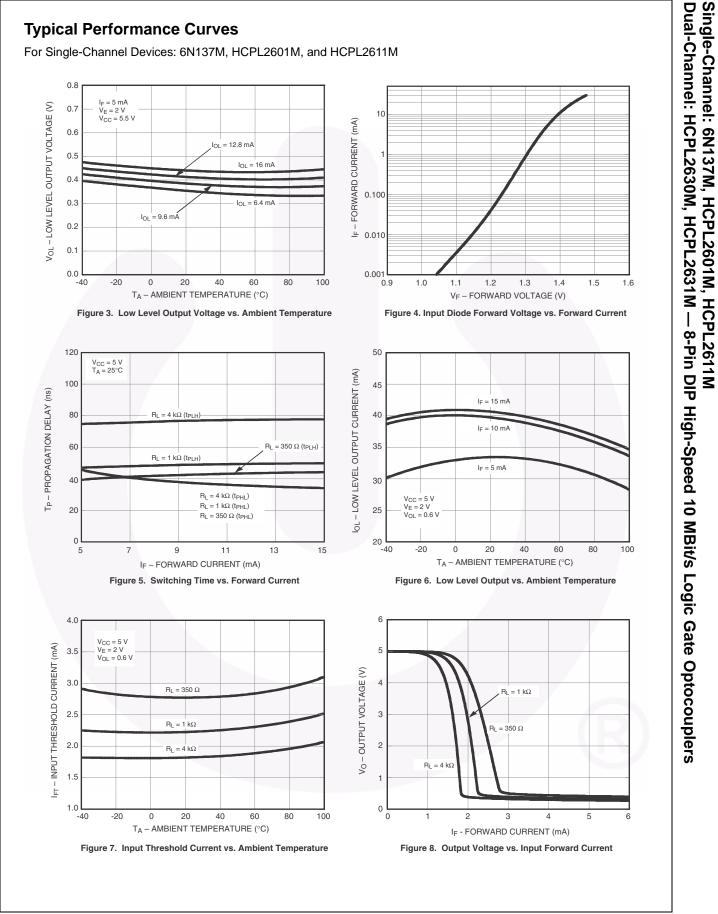
Input-Output Insulation

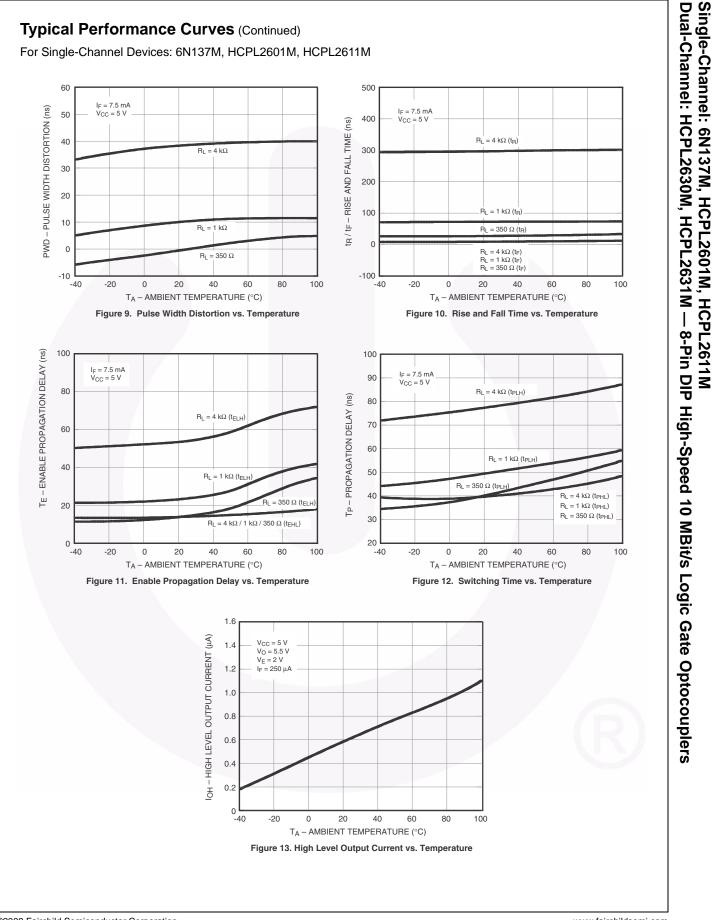
Leakage Current

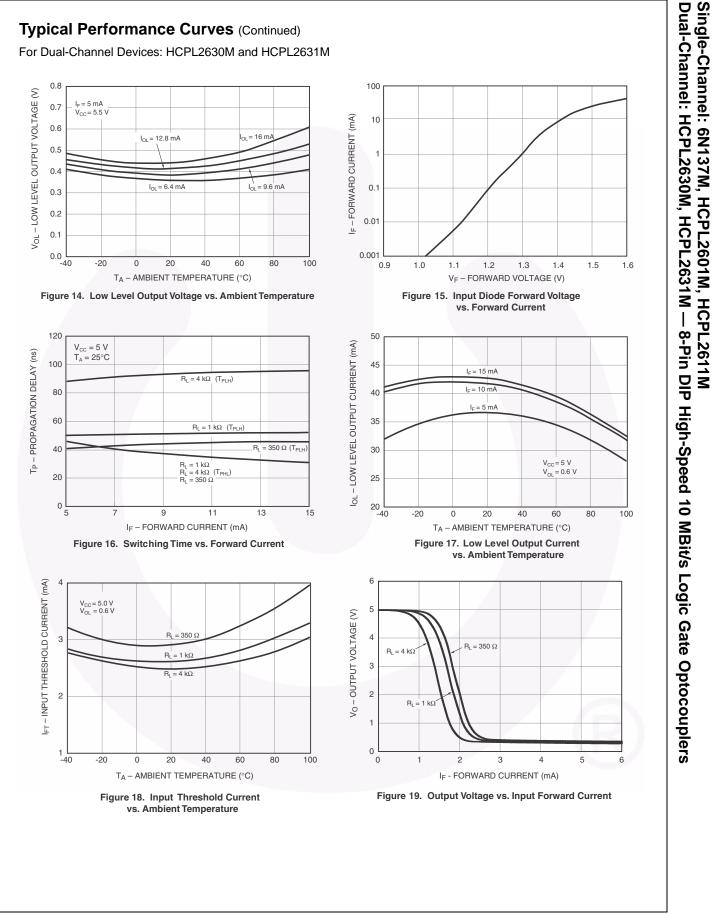
Isolation Characteristics (1 _A = 25°C unless otherwise specified.)								
Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.		
V _{ISO}	Withstand Insulation Test Voltage	All	$ Relative Humidity \leq 50\%, \\ I_{I-O} \leq 10 \ \mu A, \ t = 1 \ min, \\ f = 50 \ Hz^{(12)(13)} $	5,000				
R _{I-O}	Resistance (Input to Output)	All	$V_{I-O} = 500 V_{DC}^{(12)}$		10 ¹¹			
C _{I-O}	Capacitance (Input to Output)	All	$f = 1 \text{ MHz}, V_{I-O} = 0 V_{DC}^{(12)}$		1			

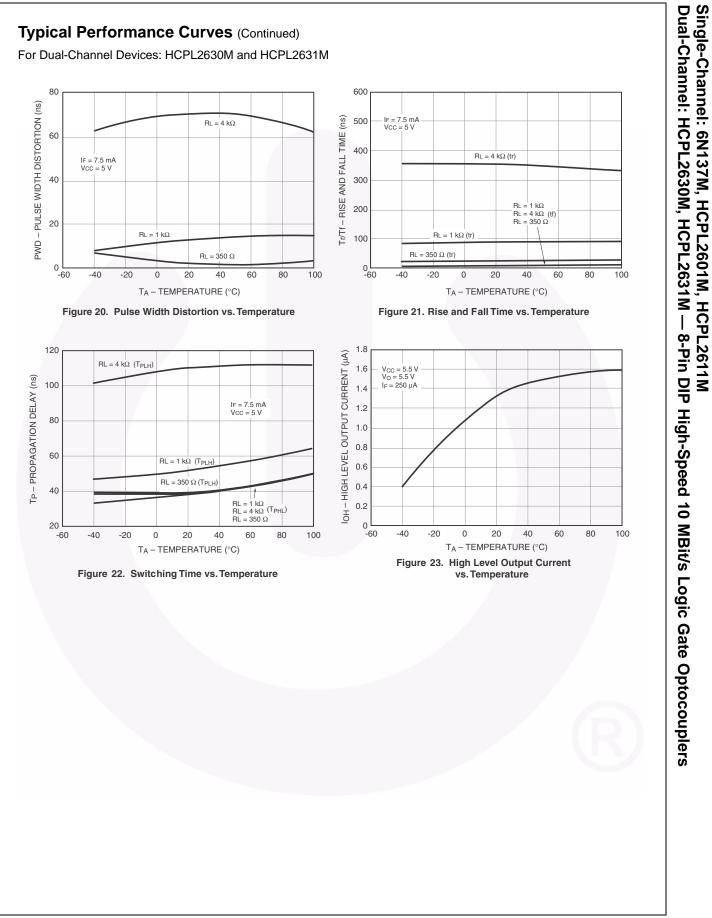
Isolation Characteristics (T_A =25°C unless otherwise specified.)

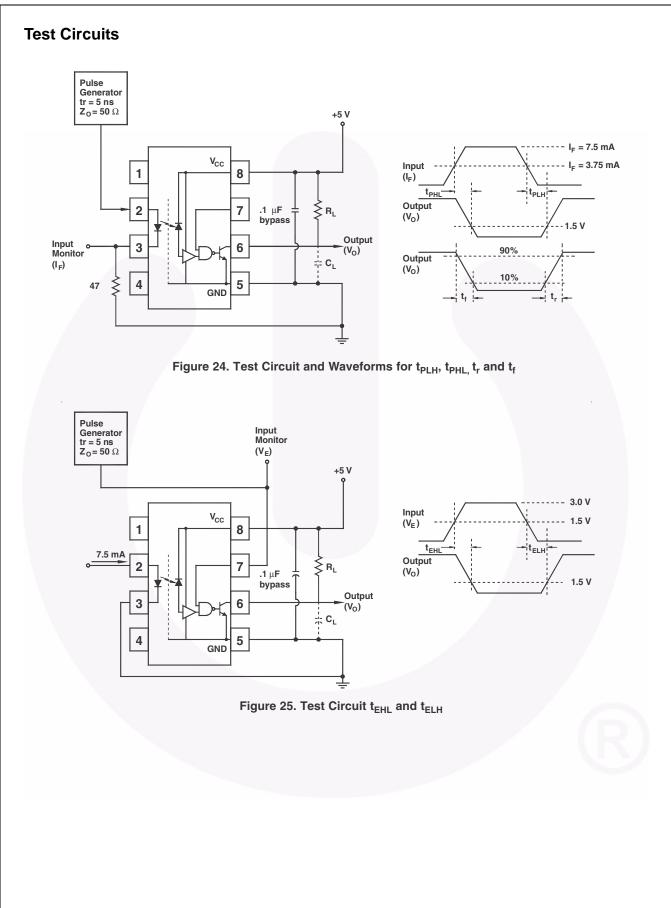
Notes:

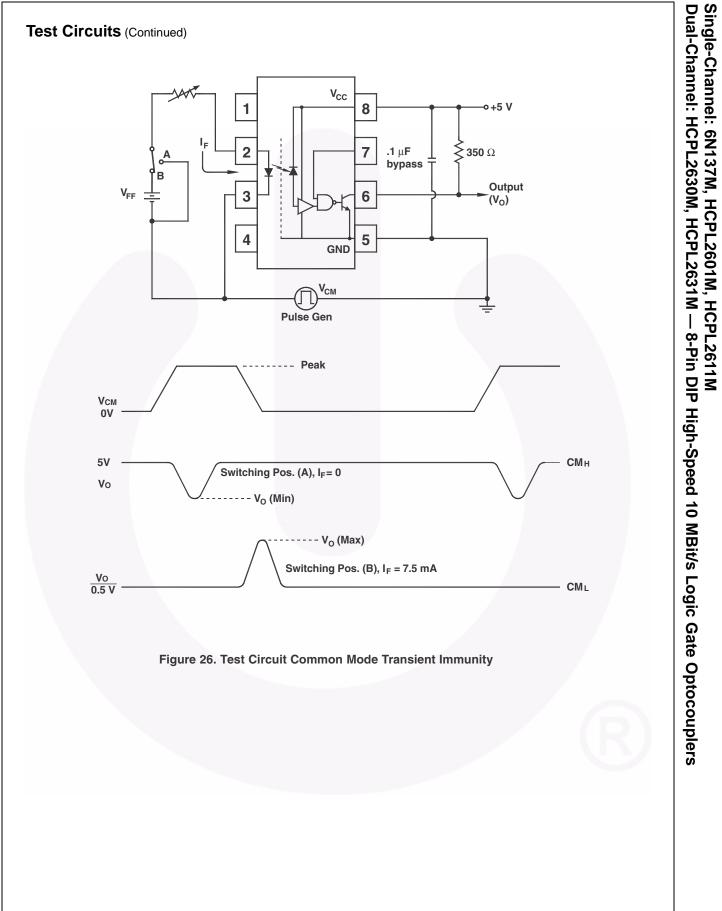

 I_{I-O}

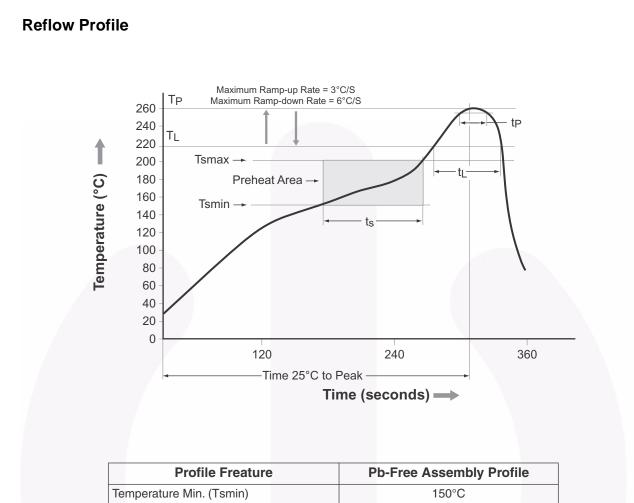

12. Device is considered a two terminal device: pins 1, 2, 3 and 4 are shorted together and pins 5, 6, 7 and 8 are shorted together.


 $\label{eq:VI-l} \begin{array}{l} \mbox{Relative Humidity} \leq 45\%, \\ \mbox{V}_{I\text{-I}} = 3000 \ \mbox{V}_{DC}, \ t = 5 \ \mbox{sec}^{(12)} \end{array}$


13. 5000 VAC_{RMS} for 1 minute duration is equivalent to 6000 VAC_{RMS} for 1 second duration.


All





150°C	
200°C	
60 to 120 s	
3°C/second maximum	
217°C	
60 to 150 s	
260°C +0°C / -5°C	
30 s	
6°C/s maximum	
8 minutes maximum	

Figure 27. Reflow Profile

Ordering Information

Part Number	Package	Packing Method
6N137M	DIP 8-Pin	Tube (50 units per tube)
6N137SM	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)
6N137SDM	SMT 8-Pin (Lead Bend)	Tape and Reel (1,000 units per reel)
6N137VM	DIP 8-Pin, DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N137SVM	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N137SDVM	SMT 8-Pin (Lead Bend), DIN EN/IEC 60747-5-5 Option	Tape and Reel (1,000 units per reel)
6N137TVM	DIP 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N137TSVM	SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
6N137TSR2VM SMT 8-Pin, 0.4" Lead Spacing, DIN EN/IEC 60747-5-5 Opti		Tape and Reel (1,000 units per reel)

Note:

The product orderable part number system listed in this table also applies to the HCPL2601M, HCPL2611M, HCPL2630M and HCPL2631M product families.

Marking Information

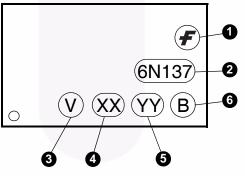
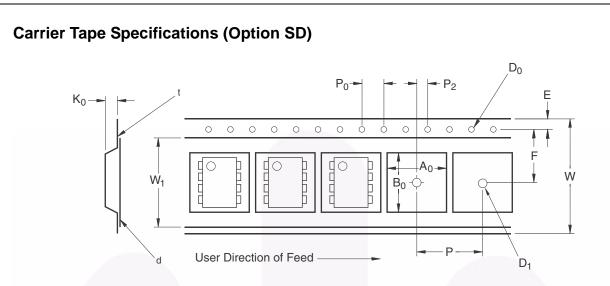
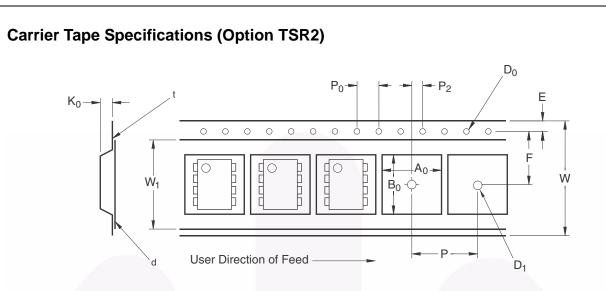
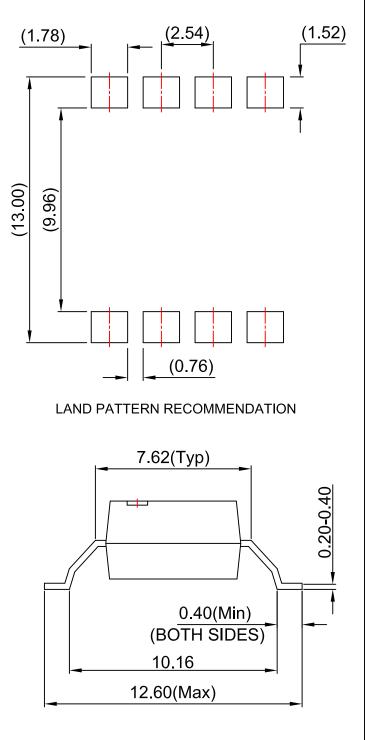




Figure 28. Top Mark

Definitions			
1	Fairchild Logo		
2	Device Number		
3 DIN EN/IEC60747-5-5 Option (only appears on comported with this option)			
4	Two Digit Year Code, e.g., '16'		
5	5 Two Digit Work Week Ranging from '01' to '53'		
6 Assembly Package Code			



Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂		2.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ±0.20
B ₀		10.30 ±0.20
K ₀		4.90 ±0.20
W ₁	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 Maximum
Maximum Component Rotation or Tilt R Minimum Bending Radius		10°
		30

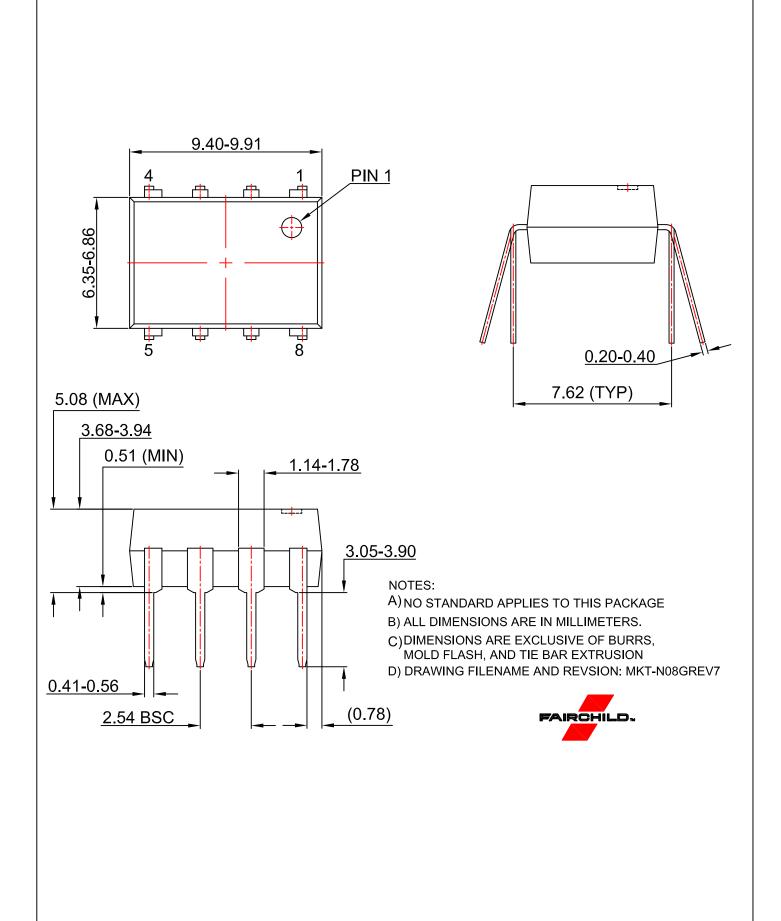
Symbol	Description	Dimension in mm
W	Tape Width	24.0 ± 0.3
t	Tape Thickness	0.40 ± 0.1
P ₀ Sprocket Hole Pitch		4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	11.5 ± 0.1
P ₂		2.0 ± 0.1
Р	Pocket Pitch	16.0 ± 0.1
A ₀	Pocket Dimensions	12.80 ± 0.1
B ₀		10.35 ± 0.1
K ₀		5.7 ±0.1
W ₁	Cover Tape Width	21.0 ± 0.1
d	Cover Tape Thickness	0.1 Maximum
Maximum Component Rotation or Tilt		10°
R	Minimum Bending Radius	30

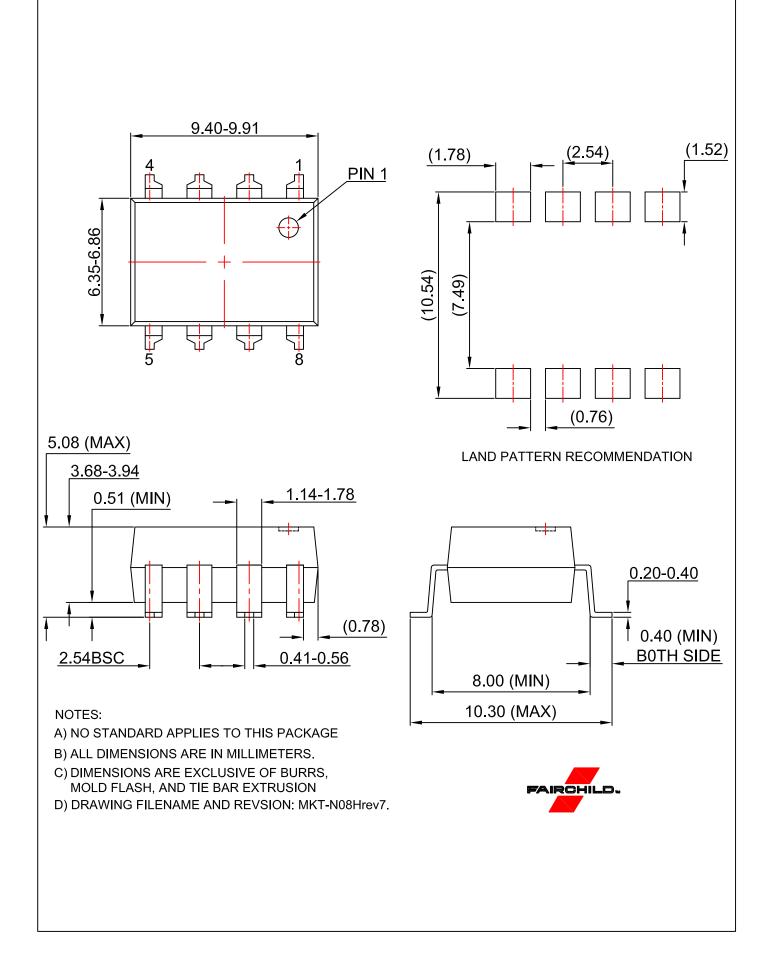
1.500 4 <u>Ø1.00</u> (TYP) 6 35-6 86 5 8 9.40-9.91 1.14-1.78 3.68-3.94 5.08 Max

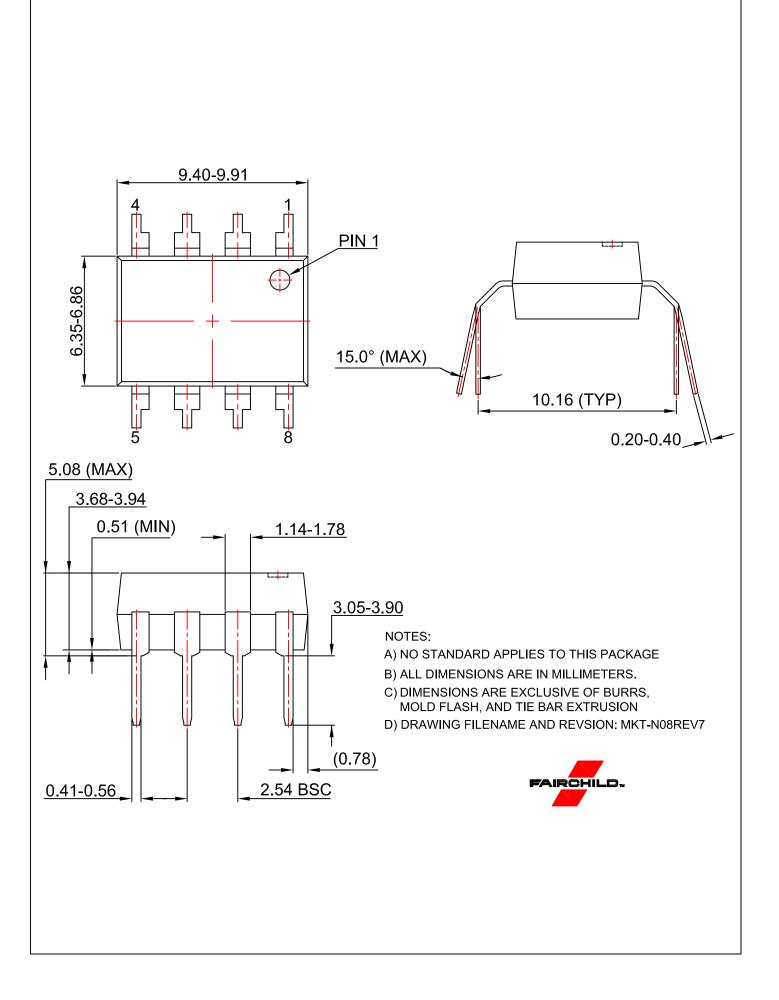
FAIRCHILD

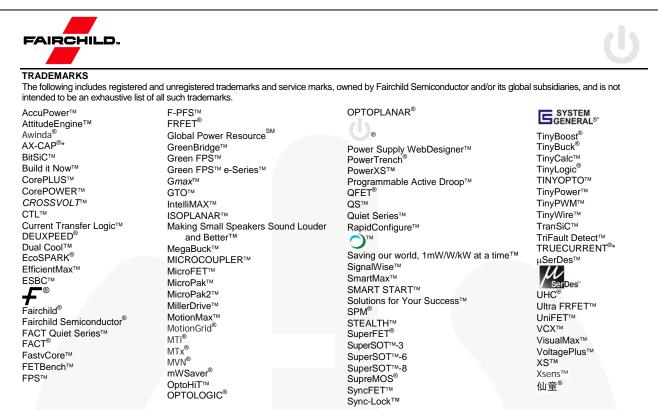
NOTES:

(0.775)


A) NO STANDARD APPLIES TO THIS PACKAGE


2.54 (Typ)


0.510(Min)


B) ALL DIMENSIONS ARE IN MILLIMETERS.

C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIOND) DWG FILENAME AND REVISION: MKT-N08Lrev2.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms			
Datasheet Identification	Product Status	Definition	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.	
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.	
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.	

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:HCPL2630SMHCPL2630MHCPL2630SDMHCPL2630SDM